Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 129(16): 165001, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36306746

ABSTRACT

Tokamak operational regimes with small edge localized modes (ELMs) could be a solution to the problem of large transient heat loads in fusion reactors. A ballooning mode near the last closed flux surface governed by the pressure gradient and the magnetic shear there has been proposed for small ELMs. In this Letter, we experimentally investigate several stabilizing effects near the last closed flux surface and present linear ideal simulations that indeed develop ballooninglike fluctuations there and connect them with nonlinear resistive simulations. The dimensionless parameters of the small ELM regime in the region of interest are very similar to those in a reactor, making this regime the ideal exhaust scenario for a future device.

2.
Rev Sci Instrum ; 90(8): 083502, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472647

ABSTRACT

A detailed description of the Langmuir probe electronics upgrade for TCV (Tokamak à Configuration Variable) is presented. The number of amplifiers and corresponding electronics has been increased from 48 to 120 in order to simultaneously connect all of the 114 Langmuir probes currently mounted in the TCV divertor and main-wall tiles. Another set of 108 amplifiers is ready to be installed in order to connect 80 new probes, built in the frame of the TCV divertor upgrade. Technical details of the amplifier circuitry are discussed as well as improvements over the first generation of amplifiers developed at SPC (formerly CRPP) in 1993/1994 and over the second generation developed in 2012/2013. While the new amplifiers have been operated successfully for over a year, it was found that their silicon power transistors can be damaged during some off-normal plasma events. Possible solutions are discussed.

3.
Rev Sci Instrum ; 89(5): 053502, 2018 May.
Article in English | MEDLINE | ID: mdl-29864827

ABSTRACT

This paper presents the current wall-embedded Langmuir probe system installed on the Tokamak à Configuration Variable (TCV), as well as the analysis tool chain used to interpret the current-voltage characteristic obtained when the probes are operated in swept-bias conditions. The analysis is based on a four-parameter fit combined with a minimum temperature approach. In order to reduce the effect of plasma fluctuations and measurement noise, several current-voltage characteristics are usually averaged before proceeding to the fitting. The impact of this procedure on the results is investigated, as well as the possible role of finite resistances in the circuitry, which could lead to an overestimation of the temperature. We study the application of the procedure in a specific regime, the plasma detachment, where results from other diagnostics indicate that the electron temperature derived from the Langmuir probes might be overestimated. To address this issue, we explore other fitting models and, in particular, an extension of the asymmetric double probe fit, which features effects of sheath expansion. We show that these models yield lower temperatures (up to approximately 60%) than the standard analysis in detached conditions, particularly for a temperature peak observed near the plasma strike point, but a discrepancy with other measurements remains. We explore a possible explanation for this observation, the presence of a fast electron population, and assess how robust the different methods are in such conditions.

4.
Rev Sci Instrum ; 87(11): 11D431, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910401

ABSTRACT

Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.

5.
Phys Rev Lett ; 114(24): 245001, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26196980

ABSTRACT

Edge intrinsic rotation was investigated in Ohmic L-mode discharges on the Tokamak à Configuration Variable, scanning the major radial position of the X point, R(X). Edge rotation decreased linearly with increasing R(X), vanishing or becoming countercurrent for an outboard X point, in agreement with theoretical expectations. The core rotation profile shifted fairly rigidly with the edge rotation, changing the central rotation speed by more than a factor of two. Core rotation reversals had little effect on the edge rotation velocity. Edge rotation was modestly more countercurrent in unfavorable than favorable ∇B shots.

6.
Rev Sci Instrum ; 84(12): 123508, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24387434

ABSTRACT

We introduce an upgraded version of a tomographical system which is built up from Absolute Extreme Ultraviolet-type (AXUV) detectors and has been installed on the Tokamak à Configuration Variable (TCV). The system is suitable for the investigation of fast radiative processes usually observed in magnetically confined high-temperature plasmas. The upgrade consists in the detector protection by movable shutters, some modifications to correct original design errors and the improvement in the data evaluation techniques. The short-term sensitivity degradation of the detectors, which is caused by the plasma radiation itself, has been monitored and found to be severe. The results provided by the system are consistent with the measurements obtained with the usual plasma radiation diagnostics installed on TCV. Additionally, the coupling between core plasma radiation and plasma-wall interaction is revealed. This was impossible with other available diagnostics on TCV.

7.
Phys Rev Lett ; 105(15): 155003, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-21230915

ABSTRACT

An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a "snowflake" (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔWELM/Wp) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.

8.
Phys Rev Lett ; 103(6): 065001, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19792574

ABSTRACT

The radial propagation of blobs generated from plasma instabilities is investigated in an open magnetic field line configuration. Blob cross-field velocities and sizes are obtained from internal probe measurements using pattern recognition. By varying the ion mass, the normalized vertical blob scale a[over] is scanned from a[over] < 1 to a[over] > 1. An analytical expression for the blob velocity including cross-field ion polarization currents, parallel currents to the sheath, and ion-neutral collisions is derived and shows good quantitative agreement with the experimental data. In agreement with previous theoretical studies, this scaling shows that, for a[over] < 1, the blob velocity is limited by cross-field ion polarization currents, while for a[over] > 1 it is limited by parallel currents to the sheath.

9.
Rev Sci Instrum ; 79(8): 086104, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19044385

ABSTRACT

A new method for toroidal velocity measurements with Mach probes is presented. This technique is based on the conditional sampling technique, the triggering events being density blobs. A reconstruction of the time resolved two-dimensional profile of electron density, electron temperature, plasma potential, and toroidal velocity is possible with a single point measurement on a shot-to-shot basis.

10.
Phys Rev Lett ; 101(11): 115005, 2008 Sep 12.
Article in English | MEDLINE | ID: mdl-18851292

ABSTRACT

The global dynamic of plasma blobs in a shear flow is investigated in a simple magnetized torus using the spatial Fourier harmonics (k-space) framework. Direct experimental evidence of a linear drift in k space of the density fluctuation energy synchronized with blob events is presented. During this drift, an increase of the fluctuation energy and a production of the kinetic energy associated with blobs are observed. The energy source of the blob is analyzed using an advection-dissipation-type equation that includes blob-flow exchange energy, linear drift in k space, nonlinear processes, and viscous dissipations. We show that blobs tap their energy from the dominant ExB vertical background flow during the linear drift stage. The exchange of energy is unidirectional as there is no evidence that blobs return energy to the flow.

11.
Phys Rev Lett ; 101(4): 045001, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18764334

ABSTRACT

The mechanisms for anomalous transport across the magnetic field are investigated in a toroidal magnetized plasma. The role of plasma instabilities and macroscopic density structures (blobs) is discussed. Examples from a scenario with open magnetic field lines are shown. A transition from a main plasma region into a loss region is reproduced. In the main plasma, which includes particle and heat source locations, the transport is dominated by the fluctuation-induced particle and heat flux associated with a plasma instability. On the low-field side, the cross-field transport is ascribed to the intermittent ejection of macroscopic blobs propagating toward the outer wall. It is shown that instabilities and blobs represent fundamentally different mechanisms for cross-field transport.

12.
Phys Rev Lett ; 100(5): 055004, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18352382

ABSTRACT

The mechanism for blob generation in a toroidal magnetized plasma is investigated using time-resolved measurements of two-dimensional structures of electron density, temperature, and plasma potential. The blobs are observed to form from a radially elongated structure that is sheared off by the E x B flow. The structure is generated by an interchange wave that increases in amplitude and extends radially in response to a decrease of the radial pressure scale length. The dependence of the blob amplitude upon the pressure radial scale length is discussed.

13.
Phys Rev Lett ; 98(25): 255002, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17678033

ABSTRACT

A unique parabolic relation is observed to link skewness and kurtosis of around ten thousand density fluctuation signals, measured over the whole cross section of a toroidal magnetized plasma for a broad range of experimental conditions. All the probability density functions of the measured signals, including those characterized by a negative skewness, are universally described by a special case of the Beta distribution. Fluctuations in the drift-interchange frequency range are necessary and sufficient to assure that probability density functions can be described by this specific Beta distribution.

14.
Phys Rev Lett ; 93(16): 165003, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15524997

ABSTRACT

The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

SELECTION OF CITATIONS
SEARCH DETAIL
...