Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 7(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34356948

ABSTRACT

Botryosphaeriaceae fungi are plant pathogens associated with Botryosphaeria dieback. To better understand the virulence factors of these fungi, we investigated the diversity of secreted proteins and extracellular enzyme activities involved in wood degradation and stilbene metabolization in Neofusicoccumparvum and Diplodiaseriata, which are two major fungi associated with grapevine B. dieback. Regarding the analysis of proteins secreted by the two fungi, our study revealed that N. parvum, known to be more aggressive than D. seriata, was characterized by a higher quantity and diversity of secreted proteins, especially hydrolases and oxidoreductases that are likely involved in cell wall and lignin degradation. In addition, when fungi were grown with wood powder, the extracellular laccase and Mn peroxidase enzyme activities were significantly higher in D. seriata compared to N.parvum. Importantly, our work also showed that secreted Botryosphaeriaceae proteins produced after grapevine wood addition are able to rapidly metabolize the grapevine stilbenes. Overall, a higher diversity of resveratrol and piceatannol metabolization products was found with enzymes of N. parvum compared to D. seriata. This study emphasizes the diversity of secreted virulence factors found in B. dieback fungi and suggests that some resveratrol oligomers produced in grapevine wood after pathogen attack could be formed via pathogenic fungal oxidases.

2.
Metabolites ; 10(6)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512855

ABSTRACT

Grapevine trunk diseases (GTDs), which are associated with complex of xylem-inhabiting fungi, represent one of the major threats to vineyard sustainability currently. Botryosphaeria dieback, one of the major GTDs, is associated with wood colonization by Botryosphaeriaceae fungi, especially Neofusicoccum parvum. We used GC-MS and HPLC-MS to compare the wood metabolomic responses of the susceptible Vitis vinifera subsp. vinifera (V.v. subsp. vinifera) and the tolerant Vitis vinifera subsp. sylvestris (V.v. subsp. sylvestris) after artificial inoculation with Neofusicoccum parvum (N. parvum). N. parvum inoculation triggered major changes in both primary and specialized metabolites in the wood. In both subspecies, infection resulted in a strong decrease in sugars (fructose, glucose, sucrose), whereas sugar alcohol content (mannitol and arabitol) was enhanced. Concerning amino acids, N. parvum early infection triggered a decrease in aspartic acid, serine, and asparagine, and a strong increase in alanine and -alanine. A trend for more intense primary metabolism alteration was observed in V.v. subsp. sylvestris compared to V. v. subsp. vinifera. N. parvum infection also triggered major changes in stilbene and flavonoid compounds. The content in resveratrol and several resveratrol oligomers increased in the wood of both subspecies after infection. Interestingly, we found a higher induction of resveratrol oligomer (putative E-miyabenol C, vitisin C, hopeaphenol, ampelopsin C) contents after wood inoculation in V.v. subsp. sylvestris.

3.
Arch Virol ; 164(11): 2775-2781, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31401693

ABSTRACT

Diagnosis and epidemiological analysis of human parvovirus B19 (hB19V) infections are essential for disease management in severely ill patients. This study aimed to evaluate the performance of an optimized NS1-VP1u nested PCR for detection and sequencing of viruses in clinical samples using 224 clinical and five reference samples. PCR sensitivity, specificity, and positive and negative predictive values were perfect (100%). While phylogenetic analysis of a 615 bp-long fragment demonstrated that the viruses in all of the samples belonged to genotype 1, this study confirmed that this optimized PCR could detect all known hB19V with high performance.


Subject(s)
Capsid Proteins/genetics , Erythema Infectiosum/diagnosis , Erythema Infectiosum/epidemiology , Parvovirus B19, Human/genetics , Viral Nonstructural Proteins/genetics , DNA, Viral/genetics , Erythema Infectiosum/virology , Humans , Phylogeny , Polymerase Chain Reaction/methods
4.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Article in English | MEDLINE | ID: mdl-28334144

ABSTRACT

The aim of this study was to determine (i) whether plant nutritional strategy affects the composition of primary metabolites exuded into the rhizosphere and (ii) the impact of exuded metabolites on denitrification activity in soil. We answered this question by analysing primary metabolite content extracted from the root-adhering soil (RAS) and the roots of three grasses representing different nutrient management strategies: conservative (Festuca paniculata), intermediate (Bromus erectus) and exploitative (Dactylis glomerata). We also investigated the impact of primary metabolites on soil microbial denitrification enzyme activity without carbon addition, comparing for each plant RAS and bulk soils. Our data show that plant nutritional strategy impacts on primary metabolite composition of root extracts or RAS. Further we show, for the first time, that RAS-extracted primary metabolites are probably better indicators to explain plant nutrient strategy than root-extracted ones. In addition, our results show that some primary metabolites present in the RAS were well correlated with soil microbial denitrification activity with positive relationships found between denitrification and the presence of some organic acids and negative ones with the presence of xylose. We demonstrated that the analysis of primary metabolites extracted from the RAS is probably more pertinent to evaluate the impact of plant on soil microbial community functioning.


Subject(s)
Plant Physiological Phenomena , Rhizosphere , Soil Microbiology , Carbon/metabolism , Denitrification , Plant Roots/metabolism , Poaceae/metabolism , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...