Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 36(12): 3423-9, 1997 Mar 25.
Article in English | MEDLINE | ID: mdl-9131991

ABSTRACT

Using the oil drop technique, we studied the effects of colipase and bile salts on the rate of hydrolysis of soybean oil by human pancreatic lipase (HPL) as well as on the interfacial binding. Upon continuously recording the decrease in the interfacial tension with time, a 10-15-fold increase in the HPL activity was found to occur in the presence of colipase. The catalytic rate constants of hydrolysis measured at the oil drop surface were found to be of the same order of magnitude as those obtained with monomolecular films spread at the air-water interface. Biotin-labeled HPL (HPL*) was used to determine the amount of adsorbed enzyme using an ELISA test. Less than 1% of the total amount of injected HPL* molecules was found to have adsorbed to the oil-water interface, and no significant effects of colipase on HPL* binding were observed. No significant changes in the hydrolysis rates or the binding of HPL* were detected in the presence of bile salts at concentrations ranging from below their critical micellar concentration (CMC) up to 100 microM. At the oil-water interface, in the absence or presence of bile salts below their CMC, it can be concluded that the colipase is a true lipase cofactor, i.e, it increases the enzyme turnover (approximately 10-15-fold) and does not affect the interfacial lipase adsorption.


Subject(s)
Bile Acids and Salts/pharmacology , Colipases/metabolism , Lipase/metabolism , Animals , Biotin , Enzyme-Linked Immunosorbent Assay , Humans , Kinetics , Models, Chemical , Oils , Pancreas/enzymology , Surface Properties , Swine , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...