Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Dent Mater ; 37(5): 832-839, 2021 05.
Article in English | MEDLINE | ID: mdl-33640173

ABSTRACT

OBJECTIVE: Recommendations to obtain the best bonding to silica-based ceramics are to prepare its surface by hydrofluoric-acid HF etching and regular application of a silane. This study investigated how the HF-etching following by ultrasonic water bath cleaning (recommended protocol to improve the bonding with a composite resin), modifies the surface chemistry of a lithium disilicate glass-ceramic and impacts the chemical bonding with silane. METHODS: Lithium disilicate glass-ceramic discs (IPS Emax Press, Ivoclar Vivadent) were mirror polished, etched with 9% HF for 20 s and rinsed 1 min under water. Two post-etching cleaning were compared: (1) no additional cleaning and (2) immersion in water ultrasonic bath for 4 min. Morphology evolution of the surfaces was carried out by scanning electron microscopy. Chemical changes were studied using X-ray Photoelectron Spectroscopy and Nano Auger Electron Spectroscopy analyses. Identification of the compounds formed with fluorine was based on by High Resolution Transmission Tlectronic Microscopy . RESULTS: Residues left on the surface of the discs after etching, the fluorine salts, were eliminated after the ultrasonic bath cleaning. However, analyses showed presence of fluorine on the lithium disilicate needles associated among others with the lithium. HR-TEM validates the presence of Li2SiF6 crystallized phased. A mechanism to explain silane bonding when Li2SiF6 phase is formed on the Li2Si2O5 needles, is proposed. SIGNIFICANCE: HF-etching leads to the formation of lithium and fluorine contain LiSi2F6 nano-precipitates on the Li2Si2O5 needles which helps to improve the bonding with silane.


Subject(s)
Dental Bonding , Silanes , Ceramics , Dental Porcelain , Hydrofluoric Acid , Materials Testing , Resin Cements , Silicon Dioxide , Surface Properties , Ultrasonics
2.
Nanoscale ; 10(8): 3823-3837, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29412204

ABSTRACT

Ce-Doped SiOxNy films are deposited by magnetron reactive sputtering from a CeO2 target under a nitrogen reactive gas atmosphere. Visible photoluminescence measurements regarding the nitrogen gas flow reveal a large emission band centered at 450 nm for a sample deposited under a 2 sccm flow. Special attention is paid to the origin of such an emission at high nitrogen concentration. Different emitting centers are suggested in Ce doped SiOxNy films (e.g. band tails, CeO2, Ce clusters, Ce3+ ions), with different activation scenarios to explain the luminescence. X-ray photoelectron spectroscopy (XPS) reveals the exclusive presence of Ce3+ ions whatever the nitrogen or Ce concentrations, while transmission electron microscopy (TEM) shows no clusters or silicates upon high temperature annealing. With the help of photoluminescence excitation spectroscopy (PLE), a wide excitation range from 250 nm up to 400 nm is revealed and various excitations of Ce3+ ions are proposed involving direct or indirect mechanisms. Nitrogen concentration plays an important role in Ce3+ emission by modifying Ce surroundings, reducing the Si phase volume in SiOxNy and causing a nephelauxetic effect. Taking into account the optimized nitrogen growth parameters, the Ce concentration is analyzed as a new parameter. Under UV excitation, a strong emission is visible to the naked eye with high Ce3+ concentration (6 at%). No saturation of the photoluminescence intensity is observed, confirming again the lack of Ce cluster or silicate phase formation due to the nitrogen presence.

3.
Nanotechnology ; 27(10): 105705, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26866415

ABSTRACT

We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh3) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh3. The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc/σ op. This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc/σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones.

4.
Langmuir ; 26(22): 16775-81, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20919735

ABSTRACT

We describe the preparation of fluorinated microspheres by precipitation polymerization and their use to fabricate superhydrophobic surfaces. For that purpose, two different approaches have been employed. In the first approach, a fluorinated monomer (either 4-fluorostyrene or 2,3,4,5,6-pentafluorostyrene) was added to the initial mixture of monomers constituted by styrene (S) and divinylbenzene (DVB). The second approach is based on the encapsulation of a block copolymer, polystyrene-b-poly(2,3,4,5,6-pentafluorostyrene), during the polymerization of the monomers (S and DVB), thus enabling the formation of particles with perfluorinated chains instead of single functional groups at the interface. Both approaches led to narrow polydisperse particles with fluoro-functional groups at the interface as demonstrated by scanning electron microscopy (SEM), infrared (IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Surface array of particles obtained by simple solvent casting presented superhydrophobic behavior with contact angles of water droplets of ca. 160-165°.

5.
Inorg Chem ; 48(16): 7962-9, 2009 Aug 17.
Article in English | MEDLINE | ID: mdl-19627136

ABSTRACT

The fluorination of La(2)CuO(4) was achieved for the first time under normal conditions of pressure and temperature (1 MPa and 298 K) via electrochemical insertion in organic fluorinated electrolytes and led to lanthanum oxyfluorides of general formula La(2)CuO(4)F(x). Analyses showed that, underneath a very thin layer of LaF(3) (a few atomic layers), fluorine is effectively inserted in the material's structure. The fluorination strongly modifies the lanthanum environment, whereas very little modification is observed on copper, suggesting an insertion in the La(2)O(2) blocks of the structure. In all cases, fluorine insertion breaks the translation symmetry and introduces a long-distance disorder, as shown by electron spin resonance. These results highlight the efficiency of electrochemistry as a new "chimie douce" type fluorination technique for solid-state materials. Performed at room temperature, it additionally does not require any specific experimental care. The choice of the electrolytic medium is crucial with regard to the fluorine insertion rate as well as the material deterioration. Successful application of this technique to the well-known La(2)CuO(4) material provides a basis for further syntheses from other oxides.

6.
Phys Chem Chem Phys ; 10(39): 5983-92, 2008 Oct 21.
Article in English | MEDLINE | ID: mdl-18825286

ABSTRACT

Mn-based oxide supports were synthesized using different procedures: (i) carbonate co-precipitation method, leading to the formation of a hexaaluminate crystallized solid (La(0.2)Sr(0.3)Ba(0.5)MnAl(11)O(19)) and (ii) solid-solid diffusion method, leading to the formation of a doped theta-Al(2)O(3) crystallized solid (nominal composition: 60 wt% La(0.2)Sr(0.3)Ba(0.5)MnAl(11)O(19) + 40 wt% Al(2)O(3)). Impregnation of 1.0 wt%Pd was carried out on both oxides. The solids were tested for the catalytic methane combustion up to 700 degrees C. It was observed that adding palladium resulted in an important increase in the catalytic activity. The combined use of H(2)-TPR and XPS techniques reveals that only Mn(3+)/Mn(2+) redox "couple" is present in the solids, whatever the synthesis procedure used. The fraction Mn(3+)/Mn is proportional to the total Mn content in the solid support, whatever the sample structure (hexaaluminate or doped theta-Al(2)O(3)) and its morphology (large crystals or aggregates of small particles, respectively). Pd impregnation and further calcination at 650 degrees C has no significant effect on the Mn(3+)/Mn fraction. However, some changes in Mn(3+) reduction profile are observed, depending on the solid structure. Indeed, palladium addition strongly affects the manganese reducibility with an important shift of the reduction process to lower temperatures (approximately 100 degrees C). On the basis of redox properties observed for the different catalysts, a Mars-van-Krevelen redox mechanism, with oxygen transfer from support oxides to palladium particles, is proposed to explain the difference in terms of catalytic conversion and stability with respect to a 1.0 wt%Pd/Al(2)O(3) reference sample.


Subject(s)
Manganese Compounds/chemistry , Methane/chemistry , Palladium/chemistry , Aluminum Oxide/chemistry , Manganese Compounds/chemical synthesis , Oxidation-Reduction , Oxides/chemistry , Particle Size , Spectrophotometry , Surface Properties , Temperature , Thermodynamics , Time Factors , X-Ray Diffraction , X-Rays
7.
Biomacromolecules ; 9(7): 1811-7, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18517246

ABSTRACT

In this contribution, the principle of spontaneous surface segregation has been applied for the preparation of polypeptide-functionalized polystyrene microspheres. For that purpose, an amphiphilic diblock copolymer was introduced in the mixture styrene/divinylbenzene and polymerized using AIBN as initiator. During the polymerization, cross-linked particles were obtained in which the diblock copolymer was encapsulated. The amphiphilic diblock copolymers used throughout this study contain a hydrophilic polypeptide segment, either poly(L-lysine) or poly(L-glutamic acid) and a hydrophobic polystyrene block. After 4 h of polymerization, rather monodisperse particles with sizes of approximately 3-4 microm were obtained. Upon annealing in hot water, the hydrophilic polypeptides migrate to the interface, hence, either positively charged or neutral particles were obtained when poly(L-lysine) is revealed at the surface and exposed to acidic or basic pH, respectively. On the opposite, negatively charged particles were achieved in basic pH water by using poly(L-glutamic acid) as additive. The surface chemical composition was modified by changing the environment of the particles. Thus, exposure in toluene provoked a surface rearrangement, and due to its affinity, the polystyrene block reorients toward the interface.


Subject(s)
Microspheres , Peptides/chemistry , Polymers/chemical synthesis , Polystyrenes/chemistry , Particle Size , Polyglutamic Acid , Polylysine , Surface Properties
8.
Article in English | MEDLINE | ID: mdl-18003155

ABSTRACT

Titanium alloys exhibit excellent biocompatibility and corrosion resistance in the body fluid and possess mechanical properties similar of the bones' properties. When the loss of osseous is important in osseous surgery, large biomaterials are implanted and should be accepted by the organism. For increasing the biomaterials biocompatibility, biological compounds can be linked or deposited on the material surface making them biologically active. In order to study the tissue-implant interaction and to favor osteoblast-adhesion onto titanium, our work deals with the grafting of cell-binding peptides containing the Arginine-Glycine-Aspartic acid (RGD) sequence. In the present study, we focus on the elaboration of patterned biomaterial surfaces with highly functionalized nanodomains. The strategy of RGD peptide immobilization involves first the grafting if an amino-functional organosilane (APTES). Then, each of the free amino moieties were used as an initiator core for a dendrimer-like synthesis to multiply the number of free groups available for RGD immobilization on the material surface.


Subject(s)
Coated Materials, Biocompatible/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Oligopeptides/chemistry , Titanium/chemistry , Adsorption , Bone Substitutes/chemistry , Crystallization/methods , Materials Testing , Particle Size , Protein Binding , Surface Properties
9.
Article in English | MEDLINE | ID: mdl-18003159

ABSTRACT

The aim of this study was to evaluate the impact of different densities on MC3T3 cells attachment onto Poly (ethylene terephthalate) (PET) film surfaces. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH functions onto PET surface, coupling agent grafting and finally immobilization of peptides. The originality of this work consist, in one hand on quantifying RGD peptides densities grafted onto PET, and on the other hand on studying MC3T3 cells responses after seeding on such biomimetic surfaces. After each functionalization step, modifications were validated by several physico-chemical techniques: X-Ray Photoelectron Spectroscopy allowed to prove the grafting and high-resolution micro-imager coupled with use of radiolabelled amino acids enabled the evaluation of peptides densities. Moreover, this last technique permit us to ensure stability of binding between peptides and polymer. The efficiency of this new route for biomimetic modification of PET surface was demonstrated by measuring the adhesion at 15h of osteoblast like cells. Study of cellular comportement was realised by means of focal contact proteins (vinculin, actin) immunostaining.


Subject(s)
Cell Adhesion/drug effects , Cell Adhesion/physiology , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Polyethylene Glycols/chemistry , Tissue Engineering/methods , 3T3 Cells , Adsorption , Animals , Cell Culture Techniques/methods , Cell Survival , Coated Materials, Biocompatible/administration & dosage , Coated Materials, Biocompatible/chemistry , Mice , Polyethylene Terephthalates , Protein Binding
10.
J Mater Sci Mater Med ; 15(7): 779-86, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15446238

ABSTRACT

Ceramics possess osteoconductive properties but exhibit no intrinsic osteoinductive capacity. Consequently, they are unable to induce new bone formation in extra osseous sites. In order to develop bone substitutes with osteogenic properties, one promising approach consists of creating hybrid materials by associating in vitro biomaterials with osteoprogenitor cells. With this aim, we have developed a novel strategy of biomimetic modification to enhance osseointegration of hydroxyapatite (HA) implants. RGD-containing peptides displaying different conformations (linear GRGDSPC and cyclo-DfKRG) were grafted onto HA surface by means of a three-step reaction procedure: silanisation with APTES, cross-linking with N-succinimidyl-3-maleimidopropionate and finally immobilisation of peptides thanks to thiol bonding. Whole process was performed in anhydrous conditions to ensure the reproducibility of the chemical functionalisation. The three-step reaction procedure was characterised by high resolution X-ray photoelectron spectroscopy. Efficiency of this biomimetic modification was finally demonstrated by measuring the adhesion of osteoprogenitor cells isolated from HBMSC onto HA surface.


Subject(s)
Cell Adhesion/physiology , Durapatite , Oligopeptides/pharmacology , Osteoblasts/physiology , Prostheses and Implants , Amino Acid Sequence , Bone Marrow Cells/cytology , Cell Adhesion/drug effects , Cells, Cultured , Ceramics , Humans , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis , Stromal Cells/cytology , Stromal Cells/physiology
11.
Biomaterials ; 25(19): 4837-46, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15120531

ABSTRACT

In the present paper, specific interest has been devoted to the design of new hybrid materials associating Ti-6Al-4V alloy and osteoprogenitor cells through the grafting of two RGD containing peptides displaying a different conformation (linear RGD and cyclo-DfKRG) onto titanium surface. Biomimetic modification was performed by means of a three-step reaction procedure: silanization with APTES, cross-linking with SMP and finally immobilization of peptides thanks to thiol bonding. The whole process was performed in anhydrous conditions to ensure homogeneous biomolecules layout as well as to guarantee a sufficient amount of biomolecules grafted onto surfaces. The efficiency of this new route for biomimetic modification of titanium surface was demonstrated by measuring the adhesion between 1 and 24 h of osteoprogenitor cells isolated from HBMSC. Benefits of the as-proposed method were related to the high concentration of peptides grafted onto the surface (around 20 pmol/mm(2)) as well as to the capacity of cyclo-DfKRG peptide to interact with integrin receptors. Moreover, High Resolution beta-imager (using [(35)S]-Cys) has exhibited the stability of peptides grafted onto the surface when treated in harsh conditions.


Subject(s)
Hematopoietic Stem Cells/physiology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Osteoblasts/physiology , Titanium/chemistry , Alloys , Biomimetic Materials/chemistry , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Extracellular Matrix Proteins/chemistry , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Materials Testing , Molecular Conformation , Osteoblasts/cytology , Osteoblasts/drug effects , Prostheses and Implants , Surface Properties
12.
J Colloid Interface Sci ; 255(1): 75-8, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12702370

ABSTRACT

Because of the Ti(3+) defects responsibility for dissociative adsorption of water onto TiO(2) surfaces and due to the hydroxyls influence on the biological behavior of titanium, controlling the Ti(3+) surface defects density by means of low-temperature vacuum annealing is proposed to improve the bone/implant interactions. Experiments have been carried out on Ti-6Al-4V alloys exhibiting a porous surface generated primarily by chemical treatment. XPS investigations have shown that low-temperature vacuum annealing can create a controlled number of Ti(3+) defects (up to 21% Ti(3+)/Ti(4+) at 573 K). High Ti(3+) defect concentration is linked to surface porosity. Such surfaces, exhibiting high hydrophilicity and microporosity, would confer to titanium biomaterials a great ability to interact with surrounding proteins and cells and hence would favor the bone anchorage of as-treated implants.

13.
J Biomed Mater Res ; 46(3): 368-75, 1999 Sep 05.
Article in English | MEDLINE | ID: mdl-10397994

ABSTRACT

The attachment of human umbilical vein endothelial cells (HUVECs) on substrates that had been covalently grafted with the cell adhesion peptides Arg-Gly-Asp (RGD) was investigated. This approach was used to provide substrates that are adhesive to cells even in the absence of serum proteins and to cells that have had no prior treatment of the surface with proteins that promote cell adhesion. We wanted to improve control of cellular interactions with cell-adhesive materials by providing fixedly bound adhesion ligands. Silica was examined as a model surface. The peptides were grafted using three different steps: grafting of aminosilane molecules; reaction with a maleimide molecule; and immobilization of cell-binding peptides containing the RGD sequence. The RGD-grafted surface was characterized by X-ray photoelectron spectroscopy (XPS) and contact-angle measurements.


Subject(s)
Cell Transplantation , Endothelium, Vascular/cytology , Oligopeptides , Silicon Dioxide/chemistry , Spectrometry, X-Ray Emission , Amino Acid Sequence , Cell Adhesion , Cells, Cultured , Cross-Linking Reagents , Humans , Maleimides/chemistry , Molecular Sequence Data , Surface Properties , Wettability
14.
Biomaterials ; 20(3): 241-51, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10030601

ABSTRACT

In order to improve long-term patency of vascular grafts, the promising concept of endothelial cell seeding is actually under investigation. Our laboratory tested a polyester coated with albumin and chitosan which permits a rapid colonization by human umbilical vein endothelial cells (HUVEC) and it seems relevant to test in vitro the expression of adhesive molecules expressed by cells with regard to the inflammatory process. We studied intercellular adhesion molecule-1 (ICAM-1) expression and focused our work on the determination of ICAM-1 sites expressed per adherent cell lining the biomaterial, thus in situ, in comparison to control HUVEC on plastic wells: the results obtained by binding experiments were correlated to flow cytometry analyses and showed that the polyester does not induce a proinflammatory state and that HUVEC covering the structure are able to respond to a stimulus.


Subject(s)
Blood Vessel Prosthesis , Coated Materials, Biocompatible , Endothelium, Vascular/metabolism , Intercellular Adhesion Molecule-1/biosynthesis , Polyesters , Antibodies, Monoclonal/metabolism , Binding Sites, Antibody , Binding, Competitive , Cell Adhesion , Cell Line , Endothelium, Vascular/ultrastructure , Flow Cytometry , Humans , Intercellular Adhesion Molecule-1/immunology , Intercellular Adhesion Molecule-1/metabolism , Radioimmunoassay
SELECTION OF CITATIONS
SEARCH DETAIL
...