Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 41(21): 5007-5010, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27805671

ABSTRACT

A supercontinuum laser source was designed for multiplex-coherent anti-Stokes Raman scattering spectroscopy. This source was based on the use of a germanium-doped standard optical fiber with a zero dispersion wavelength at 1600 nm and pumped at 1064 nm. We analyzed the nonlinear spectro-temporal interrelations of a subnanosecond pulse propagating in a normal dispersion regime in the presence of a multiple Raman cascading process and strong conversion. The multiple Raman orders permitted the generation of a high-power flat spectrum with a specific nonlinear dynamics that can open the way to subnanosecond time-coded multiplex CARS systems.

2.
Opt Lett ; 38(19): 3758-61, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24081045

ABSTRACT

We generated a broad spectrum of light between 1064 and 1300 nm in the infrared by cascading stimulated Raman scattering in a potassium titanyl phosphate crystal while broadband conversion of the infrared Raman cascade was simultaneously achieved in the visible through second-harmonic generation (SHG) and sum-frequency mixing. We observed that odd- and even-order cascaded Stokes components were spatially addressed at different angles of propagation in the crystal. The efficiency of SHG and sum-frequency mixing is discussed as a function of the pump polarization. We also report on significant spatial distortions of the output Stokes beams.

3.
Opt Express ; 20(23): 25596-602, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23187378

ABSTRACT

We demonstrate a dual-wavelength Nd:YSAG ceramic laser in which the gain volume is structurated into two different regions providing gain at the wavelength of 1061 nm and 1064 nm respectively. We discuss the role of the nonuniform distribution of the temperature in structurating the gain region via the Boltzmann effect. We show that the two laser wavelengths can be switched by adjusting the size of the pump beam or by slightly modifying the geometrical parameters of the laser cavity, either the length of the cavity or the orientation of a mirror. Additionally, we demonstrate that the transverse modes at the two wavelengths are shaped according to the effect of gain filtering caused by the structuration of the gain region.

4.
Opt Express ; 20(28): 29705-16, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23388798

ABSTRACT

In this paper, we describe and investigate the properties of a broadband source designed from a nanosecond microchip laser operating at high repetition rate and dedicated to multiplex-CARS application. We demonstrate that a strong reshaping of the initial pulse profile drastically affects the Stokes wave and therefore represents an important limitation in CARS experiment. In particular, we emphasize the saturation effect of the peak power of the Stokes wave resulting from supercontinuum generation. However, we show that this type of compact system can be particularly suitable for achieving CARS measurement.

5.
Opt Lett ; 34(19): 2888-90, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19794757

ABSTRACT

We present what we believe to be the first experimental demonstration of low-loss guiding of UV radiation in hollow-core photonic crystal fiber. The "kagomé" latticed fiber was designed to guide 0.355 microm wavelength radiation with approximately 2 dB/m loss. Moreover, an excellent agreement between modeling and experimental results was obtained. From this comparison it was inferred that propagation loss only arises from the lack of confinement, thereby indicating that such fibers may be designed for even shorter wavelengths where material loss prohibits the use of fused silica as a core material. As an example, a fiber was designed to be operated at 0.25 microm with 0.4 dB/m loss.

6.
Opt Express ; 17(18): 15392-401, 2009 Aug 31.
Article in English | MEDLINE | ID: mdl-19724537

ABSTRACT

We report about a new type of nonlinear photonic crystal fibers allowing broadband four-wave mixing and supercontinuum generation. The microstructured optical fiber has a structured core consisting of a rod of highly nonlinear glass material inserted in a silica tube. This particular structure enables four wave mixing processes with very large frequency detuning (>135 THz), which permitted the generation of a wide supercontinuum spectrum extending over 1650 nm after 2.15 m of propagation length. The comparison with results obtained from germanium-doped holey fibers confirms the important role of the rod material properties regarding nonlinear process and dispersion.

7.
Opt Express ; 16(26): 21997-2002, 2008 Dec 22.
Article in English | MEDLINE | ID: mdl-19104635

ABSTRACT

Intermodal four-wave mixing (FWM) in microstructured optical fibers (MOF) is studied theoretically and experimentally. The dependance of FWM frequency detuning on the geometrical parameters of the fiber, namely the pitch, the core width and the air-filling fraction is derived. We propose to use the results of this investigation to control the position of the Stokes and anti-Stokes waves directly from the fiber transverse structure drawing without the need for time-consuming simulations as in usual design procedures. Stokes sideband can then be freely tuned within the S-, L-, and C- bands with great potential for infrared applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...