Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Appl Radiat Isot ; 207: 111279, 2024 May.
Article in English | MEDLINE | ID: mdl-38461628

ABSTRACT

The absence of genetic variability among crop genotypes is an impediment to breeding progress, hence mutagenesis could serve as a useful tool to create genetic variation to obtain desirable traits of interest. In this study, four maize genotypes, Obatampa, Dapango, Pann 54 and Honampa which were susceptible to maize streak disease (MSD) were acutely irradiated at 254.3 Gy, using a cobalt 60 (60Co) at a rate of 300 Gy/hr. The irradiated seeds were planted with their parental controls at streak disease highly endemic environment. Field trials for the selected maize genotypes were conducted from the M1 to M4 generations to screen for MSD resistance and improved grain yield. Sixteen putative mutants and four individual parental controls were selected across the four maize genotypes at the end of the M4 generation based on disease severity score and yield indices. Detailed morphological screening and field evaluation of putative mutants showing improved plant architecture, increased grain yield and resistance to maize streak disease were tagged and selected. Obatanpa-induced-genotype was the best mutant identified with a grain yield of 6.8 t ha-1. Data on days to 50% flowering indicated that all 16 putative mutants were maturing plants.


Subject(s)
Seeds , Zea mays , Zea mays/genetics , Genotype , Phenotype , Seeds/genetics , Edible Grain
2.
Heliyon ; 9(11): e21660, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027714

ABSTRACT

Maize is one of the most important staple food crops for most low-income households in the Southern African region. Erratic and inconsistent rainfall distribution across maize-growing areas is a major threat to maize production. Late rains in recent years have forced farmers to plant later than the optimal planting dates, leading to poor maize quality being reported by industry, which raised the question of the influence of later planting dates on grain yield and quality traits of maize. Three yellow and three white maize hybrids were evaluated at three planting dates in three different production environments for three consecutive seasons using a randomized complete block design with three replications. The second and third planting dates caused a significant yield decrease of 23.37 % and 53.73 % from the first planting date across environments, respectively. Planting date three was associated with decreased grain yield, starch content, and increased protein but no significant change in fat and fiber content. Some hybrids yielded relatively well at all planting dates. In conclusion, the early planting date was the most suitable for maize grain yield and starch production in the maize-growing areas of the country. However, planting in January should be avoided at all costs, as it leads to very low yield and poor grain quality.

3.
Emerg Top Life Sci ; 7(2): 219-227, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37962270

ABSTRACT

Crop biofortification has significantly progressed in the last few decades. The first biofortification success was quality protein maize, leading to double the amount of the essential amino acids lysine and tryptophan. This was followed by biofortification of staple crops such as maize, wheat, rice, legumes and cassava for nutrients such as Fe and Zn and provitamin A. These crops have reached millions of households, especially in the developing regions of the world. The development and release of these biofortified crops through conventional breeding generally took 8-10 years. To speed up the process, molecular markers, genome-wide association studies and genomic selection have been incorporated into breeding efforts. Genetic engineering has the potential to increase the efficiency of crop biofortification through multi-nutrient biofortification in a short timespan and to combine biofortification with climate resilience. Regulatory issues still prevent the dissemination of genetically modified crops in many countries. This could be overcome by CRISPR-Cas-mediated genome editing, as it seems that many countries will regulate products of genome editing less strictly than transgenic crops. Effective policies on national or regional level are needed for the sustainable production of biofortified crops. The availability of affordable quality biofortified seed and other inputs should be ensured through local seed systems, which will increase the production and adoption of biofortified crops. There is scope to expand the crops and the range of nutrients for biofortification. Genetic engineering should be combined with conventional breeding as a approach for future improvement of multi-nutrient crops.


Subject(s)
Biofortification , Food, Fortified , Crops, Agricultural/genetics , Genome-Wide Association Study , Plants, Genetically Modified , Plant Breeding , Food Security
4.
Life (Basel) ; 13(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37240723

ABSTRACT

During drought stress, many enzymes are inactivated in plants due to Zn deficiency. Zn application and arbuscular mycorrhiza fungi (AMF)-wheat symbiosis reportedly improve the tolerance of plants to drought stress. This study was done to investigate the effect of Zn and AMF on plant growth, yield attributes, relative water content (RWC), harvest index (HI), photosynthetic activity, solute accumulation, glycine betaine (GB) accumulation, antioxidant activities [(catalase (CAT) and superoxide dismutase (SOD)], and ionic attributes in a bread wheat cultivar (SST806) under drought-stress in plants grown under greenhouse conditions. Zn application and AMF inoculation, separately and combined, enhanced all plant growth parameters and yield. Root dry weight (RDW) was increased by 25, 30, and 46% for these three treatments, respectively, under drought conditions compared to the control treatment. Overall, Zn application, AMF inoculation, and their combination increased protein content, RWC, and harvest index (HI) under drought stress. However, AMF inoculation improved proline content more than Zn application under the same conditions. Regarding GB accumulation, AMF, Zn, and the combination of Zn and AMF increased GB under drought compared to well-watered conditions by 31.71, 10.36, and 70.70%, respectively. For the antioxidant defense, AMF inoculation and Zn application improved SOD and CAT activity by 58 and 56%, respectively. This study showed that Zn and/or AMF increased antioxidant levels and ionic attributes under abiotic stress.

5.
Plants (Basel) ; 12(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050089

ABSTRACT

Maize is the staple food crop for millions of people in sub-Saharan Africa. Iron (Fe) and zinc (Zn) deficiency is a significant health risk that mainly affects low-income populations who rely solely on maize-based diets. This problem can be alleviated by developing micronutrient-rich maize grain. The aim of this study was to determine the adaptation and performance of hybrids for Fe and Zn concentration and grain yield under low soil nitrogen (N) and optimal conditions. Eighteen hybrids derived from lines and testers with low, medium, and high Fe and Zn concentration were grown during the summer rainy seasons of 2017 and 2018 at three locations under low and optimal N conditions. There were significant genotype and environment effects for grain yield, and Fe and Zn concentration, but the genotype by environment interaction effects were the largest, accounting for between 36% and 56% of variation under low N conditions. Low N levels significantly reduced grain yield, and Fe and Zn concentration. Hybrids G1, G2, G4, G7, G10, G11, and G16 were relatively stable, with relatively high mean Fe and Zn concentrations, and low additive main effects and multiplicative interaction (AMMI) stability values and iron stability index (FSI) and zinc stability index (ZSI) under low N conditions. These genotypes can be considered for production under low N stress conditions. Two environments (E4 and E3) were identified for good discriminatory power for genotype performance in terms of Fe and Zn content, respectively. Stable and high-yielding genotypes with high Fe and Zn concentration can be used as biofortified hybrids, which can contribute to a sustainable solution to malnutrition in the region, especially under low N conditions.

6.
Heliyon ; 9(3): e14177, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36915538

ABSTRACT

Iron (Fe) and zinc (Zn) nutrient enrichment of staple crops through biofortification can contribute to alleviating micronutrient deficiency in sub-Saharan Africa. A line × tester mating design was used to determine the general combining ability (GCA), specific combining ability (SCA) and heterosis for grain yield, iron, Zn and phytic concentration of six lines crossed with three testers. Lines and testers were selected for high, intermediate and low mineral content. The F1 hybrids and parental lines were evaluated under low nitrogen (N) and optimum conditions across four environments over two seasons. Under low N conditions, Fe and Zn concentration in grain, and grain yield of genotypes were reduced by 9%, 9%, and 59%, respectively. However, phytic acid concentration in grain was increased by 10% under low N conditions. Both additive and non-additive gene effects were important in controlling Fe, Zn and phytic acid concentration in grain and grain yield of maize under both N conditions. The preponderance of GCA effects indicates the importance of additive gene effects in the inheritance of grain yield. Line GCA effects were more sensitive to N conditions across the environments than the tester GCA. High and significant positive SCA effects for grain yield, Fe and Zn content under low N conditions, would be a good indicator of possible heterosis in these traits. Hybrid CBY101 LM-1600 × CBY358 LM-1857 had high and significant positive SCA for grain yield under low N conditions and is a promising candidate for production in low N environments. CBY358 LM-1857 (tester) and CBY102 LM-1601 (line) are a good general combiners for Fe, Zn and GY can be used as parents in future maize hybrid breeding programs to develop high-yielding maize genotypes with high Fe and Zn content.

7.
Front Plant Sci ; 14: 1070302, 2023.
Article in English | MEDLINE | ID: mdl-36760637

ABSTRACT

While significant progress has been made by several international breeding institutions in improving maize nutritional quality, stacking of nutritional traits like zinc (Zn), quality protein, and provitamin A has not received much attention. In this study, 11 newly introduced Zn-enhanced inbred lines were inter-mated with seven testers from normal, provitamin A and quality protein maize (QPM) nutritional backgrounds in order to estimate the general combining ability (GCA) and specific combining ability (SCA) for grain yield (GY) and secondary traits under stress conditions [(combined heat and drought stress (HMDS) and managed low nitrogen (LN)] and non-stress conditions [(summer rainfed; OPT) and well-watered (irrigated winter; WW)] in Zimbabwe. Lines L6 and L7 had positive GCA effects for GY and secondary traits under OPT and LN conditions, and L8 and L9 were good general combiners for GY under HMDS conditions. Superior hybrids with high GY and desirable secondary traits were identified as L10/T7 and L9/T7 (Zn x normal), L2/T4, L4/T4, L3/T5 (Zn x provitamin A), and L8/T6 and L11/T3 (Zn x QPM), suggesting the possibility of developing Zn-enhanced hybrids with high yield potential using different nutritional backgrounds. Both additive and dominance gene effects were important in controlling most of the measured traits. This suggests that selecting for desirable traits during inbred line development followed by hybridization and testing of specific crosses under different management conditions could optimize the breeding strategy for stacked nutritionally-enhanced maize genotypes.

8.
Plants (Basel) ; 12(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678983

ABSTRACT

The negative impacts of zinc (Zn) and iron (Fe) deficiency due to over-reliance on monotonous cereal-based diets are well-documented. Increasing micronutrient densities in maize is currently among top breeders' priorities. Here, 77 single-cross Zn-enhanced hybrids with normal, provitamin A and quality protein maize genetic backgrounds were evaluated together with seven checks for grain Zn and Fe concentration and agronomic traits under optimum, low nitrogen (N) and managed drought conditions. Results showed a fairly wide variability for grain Zn (10.7-57.8 mg kg-1) and Fe (7.1-58.4 mg kg-1) concentration amongst the hybrids, across management conditions. Notable differences in Zn concentration were observed between the Zn-enhanced quality protein maize (QPM) (31.5 mg kg-1), Zn-enhanced provitamin A maize (28.5 mg kg-1), Zn-enhanced normal maize (26.0 mg kg-1) and checks (22.9 mg kg-1). Although checks showed the lowest micronutrient concentration, they were superior in grain yield (GY) performance, followed by Zn-enhanced normal hybrids. Genotypes grown optimally had higher micronutrient concentrations than those grown under stress. Genotype × environment interaction (G × E) was significant (p ≤ 0.01) for GY, grain Zn and Fe concentration, hence micronutrient-rich varieties could be developed for specific environments. Furthermore, correlation between grain Zn and Fe was positive and highly significant (r = 0.97; p ≤ 0.01) suggesting the possibility of improving these traits simultaneously. However, the negative correlation between GY and grain Zn (r = -0.44; p ≤ 0.01) and between GY and grain Fe concentration (r = -0.43; p ≤ 0.01) was significant but of moderate magnitude, suggesting slight dilution effects. Therefore, development of high yielding and micronutrient-dense maize cultivars is possible, which could reduce the highly prevalent micronutrient deficiency in sub-Saharan Africa (SSA).

9.
Plants (Basel) ; 11(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35890487

ABSTRACT

Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on two bread wheat cultivars (SST806 and PAN3497) grown under salt stress (100 and 200 mM NaCl) in the presence and absence of 0.5 mM salicylic acid. The highest salt concentration (200 mM), in both PAN3497 and SST806, increased the days to germination and reduced the coleoptile and radicle dry weights. The shoot dry weight was reduced by 75 and 39%, root dry weight by 73 and 37%, spike number of both by 50%, spike weight by 73 and 54%, grain number by 62 and 15%, grain weight per spike by 80 and 45%, and 1000 grain weight by 9 and 29% for 200 and 100 mM NaCl, respectively. Salicylic acid in combination with 100 mM and 200 mM NaCl increased the shoot, root, and yield attributes. Salicylic acid increased the grain protein content, especially at 200 mM NaCl, and the increase was higher in SST806 than PAN3497. The macro-mineral concentration was markedly increased by an increase of NaCl. This was further increased by salicylic acid treatment for both SST806 and PAN3497. Regarding micro-minerals, Na was increased more than the other minerals in both cultivars. Mn, Zn, Fe, and Cu were increased under 100 mM and 200 Mm of salt, and salicylic acid application increased these elements further in both cultivars. These results suggested that salicylic acid application improved the salt tolerance of these two bread wheat cultivars.

10.
Plants (Basel) ; 11(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35736733

ABSTRACT

Currently, the world population is increasing, and humanity is facing food and nutritional scarcity. Climate change and variability are a major threat to global food and nutritional security, reducing crop productivity in the tropical and subtropical regions of the globe. Cowpea has the potential to make a significant contribution to global food and nutritional security. In addition, it can be part of a sustainable food system, being a genetic resource for future crop improvement, contributing to resilience and improving agricultural sustainability under climate change conditions. In malnutrition prone regions of sub-Saharan Africa (SSA) countries, cowpea has become a strategic dryland legume crop for addressing food insecurity and malnutrition. Therefore, this review aims to assess the contribution of cowpea to SSA countries as a climate-resilient crop and the existing production challenges and perspectives. Cowpea leaves and immature pods are rich in diverse nutrients, with high levels of protein, vitamins, macro and micronutrients, minerals, fiber, and carbohydrates compared to its grain. In addition, cowpea is truly a multifunctional crop for maintaining good health and for reducing non-communicable human diseases. However, as a leafy vegetable, cowpea has not been researched and promoted sufficiently because it has not been promoted as a food security crop due to its low yield potential, susceptibility to biotic and abiotic stresses, quality assurance issues, policy regulation, and cultural beliefs (it is considered a livestock feed). The development of superior cowpea as a leafy vegetable can be approached in different ways, such as conventional breeding and gene stacking, speed breeding, mutation breeding, space breeding, demand-led breeding, a pan-omics approach, and local government policies. The successful breeding of cowpea genotypes that are high-yielding with a good nutritional value as well as having resistance to biotics and tolerant to abiotic stress could also be used to address food security and malnutrition-related challenges in sub-Saharan Africa.

11.
Foods ; 11(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35406985

ABSTRACT

Malnutrition, as a result of deficiency in essential nutrients in cereal food products and consumption of a poorly balanced diet, is a major challenge facing millions of people in developing countries. However, developing maize inbred lines that are high yielding with enhanced nutritional traits for hybrid development remains a challenge. This study evaluated 40 inbred lines: 26 quality protein maize (QPM) lines, nine non-QPM lines, and five checks (three QPM lines and two non-QPM lines) in four optimum environments in Zimbabwe and South Africa. The objective of the study was to identify good-quality QPM inbred lines for future hybrid breeding efforts in order to increase the nutritional value of maize. The QPM lines had a lower protein content (7% lower) than that of the non-QPM lines but had 1.9 times more tryptophan and double the quality index. The lysine- and tryptophan-poor α-zein protein fraction was 41% lower in QPM than in non-QPM, with a subsequent increase in γ-zein. There was significant variation within the QPM inbred lines for all measured quality characteristics, indicating that the best lines can be selected from this material without a yield penalty. QPM lines that had both high protein and tryptophan levels, which can be used as parents for highly nutritious hybrids, were identified.

12.
Plants (Basel) ; 11(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35336595

ABSTRACT

Maize (Zea mays L.) is the main staple cereal food crop cultivated in southern Africa. Interactions between grain yield and biochemical traits can be useful to plant breeders in making informed decisions on the traits to be considered in breeding programs for high grain yield and enhanced quality. The objectives of this study were to estimate the heritability of grain yield and its related traits, as well as quality traits, and determine the association between quality protein maize (QPM) with non-QPM crosses. Grain yield, and agronomic and quality trait data were obtained from 13 field trials in two countries, for two consecutive seasons. Significant genotypic and phenotypic correlations were recorded for grain yield with protein content (rG = 0.38; rP = 0.25), and tryptophan with oil content (rG = 0.58; rP = 0.25), and negative rG and rP correlations were found for protein with tryptophan content and grain yield with tryptophan content. Path analysis identified ear aspect, ears per plant, and starch as the major traits contributing to grain yield. It is recommended that ear aspect should be considered a key secondary trait in breeding for QPM hybrids. The negative association between grain yield and tryptophan, and between protein and tryptophan, will make it difficult to develop hybrids with high grain yield and high tryptophan content. Hence, it is recommended that gene pyramiding should be considered for these traits.

13.
Plants (Basel) ; 10(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34579289

ABSTRACT

Abiotic constraints such as water deficit reduce cereal production. Plants have different strategies against these stresses to improve plant growth, physiological metabolism and crop production. For example, arbuscular mycorrhiza (AM)-bread wheat association has been shown to improve tolerance to drought stress conditions. The objective of this study was to determine the effect of AM inoculation on plant characteristics, lipid peroxidation, solute accumulation, water deficit saturation, photosynthetic activity, total phenol secretion and enzymatic activities including peroxidise (PO) and polyphenol oxidase (PPO) in two bread wheat cultivars (PAN3497 and SST806) under well-watered and drought-stressed conditions in plants grown under greenhouse conditions, to determine whether AM can enhance drought tolerance in wheat. AM inoculation improved morphological and physiological parameters in plants under stress. The leaf number increased by 35% and 5%, tiller number by 25% and 23%, chlorophyll content by 7% and 10%, accumulation of soluble sugars by 33% and 14%, electrolyte leakage by 26% and 32%, PPO by 44% and 47% and PO by 30% and 37% respectively, in PAN3497 and SST806, respectively. However, drought stress decreased proline content by 20% and 24%, oxidative damage to lipids measured as malondialdehyde by 34% and 60%, and total phenol content by 55% and 40% respectively, in AM treated plants of PAN3497 and SST806. PAN3497 was generally more drought-sensitive than SST806. This study showed that AM can contribute to protect plants against drought stress by alleviating water deficit induced oxidative stress.

14.
Plants (Basel) ; 10(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067794

ABSTRACT

Drought and temperature stress can cause considerable gluten protein accumulation changes during grain-filling, resulting in variations in wheat quality. The contribution of functional polymeric components of flour to its overall functionality and quality can be measured using solvent retention capacity (SRC). The aim of this study was to determine the effect of moderate and severe drought and heat stress on SRC and swelling index of glutenin (SIG) in six durum wheat cultivars with the same glutenin subunit composition and its relation with gluten protein fractions from size exclusion high performance liquid chromatography. Distilled water, sodium carbonate and sucrose SRC reacted similarly to stress conditions, with moderate heat causing the lowest values. Lactic acid SRC and SIG reacted similarly, where severe heat stress highly significantly increased the values. SIG was significantly correlated with sodium dodecyl sulphate sedimentation (SDSS) and flour protein content (FPC) under all conditions. Lactic acid SRC was highly correlated with FPC under optimal and moderate heat stress and with SDSS under moderate drought and severe heat. SIG was negatively correlated with low molecular weight glutenins under optimal and drought conditions, and combined for all treatments. The relationship between SRC and gluten proteins was inconsistent under different stress conditions.

15.
Nutrients ; 13(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807073

ABSTRACT

Macro and micronutrient deficiencies pose serious health challenges globally, with the largest impact in developing regions such as subSaharan Africa (SSA), Latin America and South Asia. Maize is a good source of calories but contains low concentrations of essential nutrients. Major limiting nutrients in maize-based diets are essential amino acids such as lysine and tryptophan, and micronutrients such as vitamin A, zinc (Zn) and iron (Fe). Responding to these challenges, separate maize biofortification programs have been designed worldwide, resulting in several cultivars with high levels of provitamin A, lysine, tryptophan, Zn and Fe being commercialized. This strategy of developing single-nutrient biofortified cultivars does not address the nutrient deficiency challenges in SSA in an integrated manner. Hence, development of maize with multinutritional attributes can be a sustainable and cost-effective strategy for addressing the problem of nutrient deficiencies in SSA. This review provides a synopsis of the health challenges associated with Zn, provitamin A and tryptophan deficiencies and link these to vulnerable societies; a synthesis of past and present intervention measures for addressing nutrient deficiencies in SSA; and a discussion on the possibility of developing maize with multinutritional quality attributes, but also with adaptation to stress conditions in SSA.


Subject(s)
Biofortification/methods , Zea mays/chemistry , Africa , Amino Acids , Diet , Food, Fortified , Gene Editing , Humans , Iron/metabolism , Malnutrition/epidemiology , Micronutrients , Nutritive Value , Plant Proteins , Plants, Genetically Modified , Provitamins , Risk Factors , Vitamin A , Vitamin A Deficiency , Zea mays/genetics , Zinc/metabolism
16.
Sci Rep ; 11(1): 7408, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795835

ABSTRACT

With its drought tolerant and protein-rich properties, Bambara groundnut [Vigna subterranea (L.) Verdc.], an indigenous African legume crop can contribute immensely to food security. This miracle crop is used as food and for the enhancement of soil fertility in South Africa. Knowledge on the genetic diversity and structure among the Bambara groundnut landraces can pave the way for the effective use and cultivation of this crop in southern Africa, especially South Africa. The aim of this study was to assess the genetic diversity and structure among Bambara groundnut landraces collected across South Africa and compared to a limited number of accessions from southern Africa using SSR markers. Seventy-eight Bambara groundnut accessions were genotyped using 19 Bambara specific SSR markers. SSR loci explored in this study, were all polymorphic. A total of 127 alleles were detected with a mean of 6.7 alleles per locus. Allele diversity and frequency among genotypes varied from 0.21 to 0.85 with an average of 0.62 per locus. Genetic variation as described by the analysis of molecular variance indicated higher genetic diversity (92%) within landraces than between (8%) different landraces. Population structure analysis showed that three subpopulations existed, and most of the South African accessions were restricted to one subpopulation, indicating that Bambara landraces has the ability to form unique haplotypes in different environments. Information harnessed in this study is helpful for further use in breeding programs for crop improvement.


Subject(s)
Genetic Variation , Phylogeny , Vigna/classification , Vigna/genetics , Alleles , Bayes Theorem , Microsatellite Repeats , Models, Genetic , Polymorphism, Genetic , Quantitative Trait, Heritable , South Africa
17.
Foods ; 9(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291541

ABSTRACT

Biofortified yellow-fleshed cassava is important in countries with high cassava consumption, to improve the vitamin A status of their populations. Yellow- and white-fleshed cassava were evaluated over three locations for proximate composition and cyanide content as well as retention of carotenoids after boiling. There was significant variation in the crude fiber, fat, protein and ash content of the genotypes. All but one of the yellow-fleshed cassava genotypes recorded higher protein values than the white-fleshed local genotypes across locations. The cyanide content of the genotypes varied between locations but was within the range of sweet cassava genotypes, but above the maximum acceptable recommended limit. Micronutrient retention is important in biofortified crops because a loss of micronutrients during processing and cooking reduces the nutritional value of biofortified foods. Total carotenoid content (TCC) ranged from 1.18-18.81 µg.g-1 and 1.01-13.36 µg.g-1 (fresh weight basis) for fresh and boiled cassava, respectively. All the yellow-fleshed cassava genotypes recorded higher TCC values in both the fresh and boiled state than the white-fleshed genotypes used as checks.

18.
Crop Sci ; 60(6): 2951-2970, 2020.
Article in English | MEDLINE | ID: mdl-33328691

ABSTRACT

Fall armyworm [Spodoptera frugiperda (J.E. Smith); FAW] invasion has exacerbated maize (Zea mays L.) crop yield losses in sub-Saharan Africa (SSA), already threatened by other stresses, especially those that are climate-change induced. The FAW is difficult to control, manage, or eradicate, because it is polyphagous and trans-boundary, multiplies fast, has a short life cycle and migrates easily, and lacks the diapause growth phase. In this study, FAW and its impact in Africa was reviewed, as well as past and present control strategies for this pest. Pesticides, cultural practices, natural enemies, host-plant resistance, integrated pest management (IPM), and plant breeding approaches were examined as possible control strategies. It was concluded that an IPM control strategy, guided by cultural approaches already being used by farmers, and what can be adopted from the Americas, coupled with an insect-resistance management strategy, is the best option to manage this pest in Africa. These strategies will be strengthened by breeding for multi-trait host-plant resistance through stacking of genes for different modes of control of the pest.

19.
Plants (Basel) ; 9(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142829

ABSTRACT

The recent study was conducted to examine the influence of acidic soil on the activities of ascorbate (APX) and guaiacol peroxidase (POD), proline, protein as well as malon-dialdehyde (MDA) content, in two commercial spring wheat cultivars (PAN3497 and SST806) at different growth stages (tillering and grain filling). A cultivar effect was significant only for MDA content, while the treatment effect was highly significant for proline, protein, and MDA. The sampling time effect was significant for most characteristics. MDA, antioxidative capacity, as well as protein content increased with maturity. At grain filling, MDA and proline contents were significantly higher at pH 5 than pH 6 and 7 for both cultivars, with the highest content in SST806. Similarly, SST806 had significantly higher APX and POD when growing at pH 5. There were no significant differences in protein content at grain filling between either genotype or treatments affected by low pH. This study showed that growth stage and soil pH influence the rate of lipid peroxidation as well as the antioxidative capacity of wheat, with a larger effect at grain filling, at pH 5. Although SST806 had higher proline, POD, and APX content than PAN3497 at this growth stage, this coincided with a very high MDA content. This shows that the high antioxidative capacity observed here, was not associated with a reduction of lipid peroxidation under low soil pH. Further research should, therefore, be done to establish the role of the induced antioxidant system in association with growth and yield in wheat.

20.
Crop Sci ; 60(2): 991-1003, 2020.
Article in English | MEDLINE | ID: mdl-32612293

ABSTRACT

Soil acidity has received less attention than other biophysical stresses such as drought and low N, despite accounting for a considerable reduction in maize (Zea mays L.) productivity in many parts of southern Africa. The line × tester mating design was used to determine the general combining ability (GCA) for grain yield of 14 maize inbred lines and the specific combining ability (SCA) of their corresponding crosses. Thirty-three single-cross hybrids were evaluated under acid and optimum soils across 11 environments over three seasons. Across environments, mean grain yield reduction ranged from 11 to 37% due to low pH. Additive gene action was more important than nonadditive gene action for grain yield under both soil conditions. Tester GCA effects were larger for grain yield than GCA effects of lines and SCA effects of crosses for both soil conditions. Tester GCA effects were less sensitive to environmental fluctuations than line GCA effects and SCA effects of crosses. Cross combinations with desirable SCA effects for grain yield were associated with high per se grain yield, which suggests that SCA was a good predictor of grain yield in this study. These crosses consisted of good × good and good × poor general combiners, which indicates that GCA was a good predictor of grain yield. Therefore, priority should be given for yield selection in progenies and hybridization of specific crosses with desirable SCA when breeding acid-soil-tolerant maize.

SELECTION OF CITATIONS
SEARCH DETAIL
...