Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 9: 1623-1628, 2018.
Article in English | MEDLINE | ID: mdl-29977696

ABSTRACT

The continuous demand for improved performance in energy storage is driving the evolution of Li-ion battery technology toward emerging battery architectures such as 3D all-solid-state microbatteries (ASB). Being based on solid-state ionic processes in thin films, these new energy storage devices require adequate materials analysis techniques to study ionic and electronic phenomena. This is key to facilitate their commercial introduction. For example, in the case of cathode materials, structural, electrical and chemical information must be probed at the nanoscale and in the same area, to identify the ionic processes occurring inside each individual layer and understand the impact on the entire battery cell. In this work, we pursue this objective by using two well established nanoscale analysis techniques namely conductive atomic force microscopy (C-AFM) and secondary ion mass spectrometry (SIMS). We present a platform to study Li-ion composites with nanometer resolution that allows one to sense a multitude of key characteristics including structural, electrical and chemical information. First, we demonstrate the capability of a biased AFM tip to perform field-induced ionic migration in thin (cathode) films and its diagnosis through the observation of the local resistance change. The latter is ascribed to the internal rearrangement of Li-ions under the effect of a strong and localized electric field. Second, the combination of C-AFM and SIMS is used to correlate electrical conductivity and local chemistry in different cathodes for application in ASB. Finally, a promising starting point towards quantitative electrochemical information starting from C-AFM is indicated.

2.
ACS Appl Mater Interfaces ; 7(40): 22413-20, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26436688

ABSTRACT

Ultrathin LiMn2O4 electrode layers with average crystal size of ∼15 nm were fabricated by means of radio frequency sputtering. Cycling behavior and rate performance was evaluated by galvanostatic charge and discharge measurements. The thinnest films show the highest volumetric capacity and best cycling stability, retaining the initial capacity over 70 (dis)charging cycles when manganese dissolution is prevented. The increased stability for film thicknesses below 50 nm allows cycling in both the 4 and 3 V potential regions, resulting in a high volumetric capacity of 1.2 Ah/cm3. It is shown that the thinnest films can be charged to 75% of their full capacity within 18 s (200 C), the best rate performance reported for LiMn2O4. This is explained by the short diffusion lengths inherent to thin films and the absence of phase transformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...