Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Biomech Biomed Engin ; 10(1): 1-12, 2007 Feb.
Article in English | MEDLINE | ID: mdl-18651267

ABSTRACT

This paper presents for the first time numerical predictions of mechanical blood hemolysis obtained by solving a hyperbolic partial differential equation (PDE) modelling the hemolysis in a Eulerian frame of reference. This provides hemolysis predictions over the entire computational domain as an alternative to the Lagrangian approach consisting in evaluating cell hemolysis along their trajectories. The solution of a PDE over a computational domain, such as in the approach presented herein, yields a unique solution. This is a clear advantage over the Lagrangian approach, which requires the human-made choice of a limited number of trajectories for integration and inevitably results in the incomplete coverage of the computational domain. The hyperbolic hemolysis model is solved with a Discontinuous Galerkin finite element method. The solution algorithm also includes adaptive remeshing to provide high accuracy simulations. Predictions of the modified index of hemolysis (MIH) are presented for flows in dialysis cannulae and sudden contractions. MIH predictions for cannulae differ significantly from those obtained by other authors using the Lagrangian approach. The predictions for flows in sudden contractions are used, along with our own experimental measurements, to assess the value of the threshold shear stress required for hemolysis that is included in the hemolysis model.


Subject(s)
Arteries/physiology , Blood Flow Velocity/physiology , Blood Pressure/physiology , Hemolysis/physiology , Models, Cardiovascular , Animals , Computer Simulation , Elasticity , Humans , Shear Strength , Stress, Mechanical
2.
J Biomech Eng ; 128(5): 688-96, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16995755

ABSTRACT

In a previous communication, we have proposed a numerical framework for the prediction of in vitro hemolysis indices in the preselection and optimization of medical devices. This numerical methodology is based on a novel interpretation of Giersiepen-Wurzinger blood damage correlation as a volume integration of a damage function over the computational domain. We now propose an improvement of this approach based on a hyperbolic equation of blood damage that is asymptotically consistent. Consequently, while the proposed correction has yet to be proven experimentally, it has the potential to numerically predict more realistic red blood cell destruction in the case of in vitro experiments. We also investigate the appropriate computation of the shear stress scalar of the damage fraction model. Finally, we assess the validity of this consistent approach with an analytical example and with some 3D examples.


Subject(s)
Erythrocytes/physiology , Hemolysis/physiology , Models, Biological , Computer Simulation , Elasticity , Humans , Shear Strength , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...