Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Med Biol ; 64(3): 035015, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30537693

ABSTRACT

Sensitivity and spatial resolution are the main parameters to maximize in the performance of a PET scanner. For this purpose, detectors consisting of a combination of continuous crystals optically coupled to segmented photodetectors have been employed. With the use of continuous crystals the sensitivity is increased with respect to the pixelated crystals. In addition, spatial resolution is no longer limited to the crystal size. The main drawback is the difficulty in determining the interaction position. In this work, we present the characterization of the performance of a full ring based on cuboid continuous crystals coupled to SiPMs. To this end, we have employed the simulations developed in a previous work for our experimental detector head. Sensitivity could be further enhanced by using tapered crystals. This enhancement is obtained by increasing the solid angle coverage, reducing the wedge-shaped gaps between contiguous detectors. The performance of the scanners based on both crystal geometries was characterized following NEMA NU 4-2008 standardized protocol in order to compare them. An average sensitivity gain over the entire axial field of view of 13.63% has been obtained with tapered geometry while similar performance of the spatial resolution has been proven with both scanners. The activity at which NECR and true peak occur is smaller and the peak value is greater for tapered crystals than for cuboid crystals. Moreover, a higher degree of homogeneity was obtained in the sensitivity map due to the tighter packing of the crystals, which reduces the gaps and results in a better recovery of homogeneous regions than for the cuboid configuration. Some of the results obtained, such as spatial resolution, depend on the interaction position estimation and may vary if other method is employed.


Subject(s)
Models, Theoretical , Positron-Emission Tomography/instrumentation , Signal-To-Noise Ratio , Equipment Design
2.
Phys Med Biol ; 63(13): 135004, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29847316

ABSTRACT

Given the strong variations in the sensitivity of Compton cameras for the detection of events originating from different points in the field of view (FoV), sensitivity correction is often necessary in Compton image reconstruction. Several approaches for the calculation of the sensitivity matrix have been proposed in the literature. While most of these models are easily implemented and can be useful in many cases, they usually assume high angular coverage over the scattered photon, which is not the case for our prototype. In this work, we have derived an analytical model that allows us to calculate a detailed sensitivity matrix, which has been compared to other sensitivity models in the literature. Specifically, the proposed model describes the probability of measuring a useful event in a two-plane Compton camera, including the most relevant physical processes involved. The model has been used to obtain an expression for the system and sensitivity matrices for iterative image reconstruction. These matrices have been validated taking Monte Carlo simulations as a reference. In order to study the impact of the sensitivity, images reconstructed with our sensitivity model and with other models have been compared. Images have been reconstructed from several simulated sources, including point-like sources and extended distributions of activity, and also from experimental data measured with 22Na sources. Results show that our sensitivity model is the best suited for our prototype. Although other models in the literature perform successfully in many scenarios, they are not applicable in all the geometrical configurations of interest for our system. In general, our model allows to effectively recover the intensity of point-like sources at different positions in the FoV and to reconstruct regions of homogeneous activity with minimal variance. Moreover, it can be employed for all Compton camera configurations, including those with low angular coverage over the scatterer.


Subject(s)
Limit of Detection , Radionuclide Imaging/instrumentation , Algorithms , Image Processing, Computer-Assisted , Monte Carlo Method , Photons , Probability , Scattering, Radiation
3.
Phys Med Biol ; 62(18): 7321-7341, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28718772

ABSTRACT

Compton imaging devices have been proposed and studied for a wide range of applications. We have developed a Compton camera prototype which can be operated with two or three detector layers based on monolithic lanthanum bromide ([Formula: see text]) crystals coupled to silicon photomultipliers (SiPMs), to be used for proton range verification in hadron therapy. In this work, we present the results obtained with our prototype in laboratory tests with radioactive sources and in simulation studies. Images of a [Formula: see text]Na and an [Formula: see text]Y radioactive sources have been successfully reconstructed. The full width half maximum of the reconstructed images is below 4 mm for a [Formula: see text]Na source at a distance of 5 cm.


Subject(s)
Diagnostic Imaging/instrumentation , Gamma Rays , Image Processing, Computer-Assisted/methods , Protons , Radiation Monitoring/instrumentation , Algorithms , Computer Simulation , Humans , Silicon/chemistry
4.
Phys Med Biol ; 61(14): 5149-65, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27352107

ABSTRACT

In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing (22)Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.


Subject(s)
Algorithms , Diagnostic Imaging/instrumentation , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Protons , Radiation Monitoring/instrumentation , Telescopes/statistics & numerical data , Gamma Rays/therapeutic use , Humans , Monte Carlo Method
5.
Front Oncol ; 6: 14, 2016.
Article in English | MEDLINE | ID: mdl-26870693

ABSTRACT

A Compton telescope for dose monitoring in hadron therapy is under development at IFIC. The system consists of three layers of LaBr3 crystals coupled to silicon photomultiplier arrays. (22)Na sources have been successfully imaged reconstructing the data with an ML-EM code. Calibration and temperature stabilization are necessary for the prototype operation at low coincidence rates. A spatial resolution of 7.8 mm FWHM has been obtained in the first imaging tests.

6.
Nucl Instrum Methods Phys Res A ; 788: 86-94, 2015 Jul 11.
Article in English | MEDLINE | ID: mdl-33173251

ABSTRACT

Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm2 pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (2D) geometry with a Jaszczak phantom (rod diameters of 1.2-4.8 mm) filled with 18F-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).

7.
Phys Procedia ; 37: 1488-1496, 2012.
Article in English | MEDLINE | ID: mdl-34306249

ABSTRACT

To assist ongoing investigations of the limits of the tradeoff between spatial resolution and noise in PET imaging, several PET instruments based on silicon-pad detectors have been developed. The latest is a segment of a dual-ring device to demonstrate that excellent reconstructed image resolution can be achieved with a scanner that uses high-resolution detectors placed close to the object of interest or surrounding a small field-of-view in combination with detectors having modest resolution at larger radius. The outer ring of our demonstrator comprises conventional BGO block detectors scavenged from a clinical PET scanner and located at a 500mm radius around a 50mm diameter field-of-view. The inner detector-in contrast to the high-Z scintillator typically used in PET-is based on silicon-pad detectors located at 70mm nominal radius. Each silicon detector has 512 1.4mm x 1.4mm x 1mm detector elements in a 16 x 32 array and is read out using VATA GP7 ASICs (Gamma Medica-Ideas, Northridge, CA). Even though virtually all interactions of 511 keV annihilation photons in silicon are Compton-scatter, both high spatial resolution and reasonable sensitivity appears possible. The system has demonstrated resolution of ~0.7mm FWHM with Na-22 for coincidences having the highest intrinsic resolution (silicon-silicon) and 5-6mm FWHM for the lowest resolution BGO-BGO coincidences. Spatial resolution for images reconstructed from the mixed silicon-BGO coincidences is ~1.5mm FWHM demonstrating the "magnifying-glass" concept.

8.
Nucl Instrum Methods Phys Res A ; 570(3): 543-555, 2007 Jan 21.
Article in English | MEDLINE | ID: mdl-18084629

ABSTRACT

A very high resolution small animal positron emission tomograph (PET) which can achieve sub-millimeter spatial resolution is being developed using silicon pad detectors. The prototype PET for a single slice instrument consists of two 1 mm thick silicon pad detectors, each containing a 32 x 16 array of 1.4 mm x 1.4 mm pads read out with four VATAGP3 chips which have 128 channels low-noise self triggering ASIC in each chip, coincidence units, a source turntable and tungsten slice collimator. The silicon detectors were located edgewise on opposite sides of a 4 cm field-of-view to maximize efficiency. Energy resolution is dominated by electronic noise, which is 0.98% (1.38 keV) FWHM at 140.5 keV. Coincidence timing resolution is 82.1 ns FWHM and coincidence efficiency was measured to be 1.04 x 10(-3) % from two silicon detectors with annihilation photons of (18)F source Image data were acquired and reconstructed using conventional 2-D filtered-back projection (FBP) and a maximum likelihood expectation maximization (ML-EM) method. Image resolution of approximately 1.45 mm FWHM is obtained from 1-D profile of 1.1 mm diameter (18)F line source image. Even better resolution can be obtained with smaller detector element sizes. While many challenges remain in scaling up the instrument to useful efficiency including densely packed detectors and significantly improved timing resolution, performance of the test setup in terms of easily achieving submillimeter resolution is compelling.

9.
Phys Med Biol ; 52(10): 2807-26, 2007 May 21.
Article in English | MEDLINE | ID: mdl-17473353

ABSTRACT

A very high resolution positron emission tomography (PET) scanner for small animal imaging based on the idea of inserting a ring of high-granularity solid-state detectors into a conventional PET scanner is under investigation. A particularly interesting configuration of this concept, which takes the form of a degenerate Compton camera, is shown capable of providing sub-millimeter resolution with good sensitivity. We present a Compton PET system and estimate its performance using a proof-of-concept prototype. A prototype single-slice imaging instrument was constructed with two silicon detectors 1 mm thick, each having 512 1.4 mm x 1.4 mm pads arranged in a 32 x 16 array. The silicon detectors were located edgewise on opposite sides and flanked by two non-position sensitive BGO detectors. The scanner performance was measured for its sensitivity, energy, timing, spatial resolution and resolution uniformity. Using the experimental scanner, energy resolution for the silicon detectors is 1%. However, system energy resolution is dominated by the 23% FWHM BGO resolution. Timing resolution for silicon is 82.1 ns FWHM due to time-walk in trigger devices. Using the scattered photons, time resolution between the BGO detectors is 19.4 ns FWHM. Image resolution of 980 microm FWHM at the center of the field-of-view (FOV) is obtained from a 1D profile of a 0.254 mm diameter (18)F line source image reconstructed using the conventional 2D filtered back-projection (FBP). The 0.4 mm gap between two line sources is resolved in the image reconstructed with both FBP and the maximum likelihood expectation maximization (ML-EM) algorithm. The experimental instrument demonstrates sub-millimeter resolution. A prototype having sensitivity high enough for initial small animal images can be used for in vivo studies of small animal models of metabolism, molecular mechanism and the development of new radiotracers.


Subject(s)
Positron-Emission Tomography/instrumentation , Silicon/chemistry , Animals , Equipment Design
10.
J Opt Soc Am A Opt Image Sci Vis ; 19(3): 603-9, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11876327

ABSTRACT

We reelaborate on the basic properties of lossless multilayers. We show that the transfer matrices for these multilayers have essentially the same algebraic properties as the Lorentz group SO(2, 1) in a (2 + 1)-dimensional space-time as well as the group SL(2, R) underlying the structure of the ABCD law in geometrical optics. By resorting to the Iwasawa decomposition, we represent the action of any multilayer as the product of three matrices of simple interpretation. This group-theoretical structure allows us to introduce bilinear transformations in the complex plane. The concept of multilayer transfer function naturally emerges, and its corresponding properties in the unit disk are studied. We show that the Iwasawa decomposition is reflected at this geometrical level in three simple actions that can be considered the basic pieces for a deeper understanding of the multilayer behavior. We use the method to analyze in detail a simple practical example.

SELECTION OF CITATIONS
SEARCH DETAIL
...