Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Language
Publication year range
1.
Environ Toxicol Chem ; 42(6): 1293-1308, 2023 06.
Article in English | MEDLINE | ID: mdl-36919993

ABSTRACT

The toxicity of pesticides to organisms depends on the total amount of chemical exposure. Toxicity can be minimized if the organism recognizes the pesticide and alters its behavior. Furthermore, the physical barrier of cuticular hydrocarbons can prevent the entrance of the pesticide into the organism. Finally, if the pesticide enters the body, the organism experiences physiological changes favoring detoxification and the maintenance of homeostasis. We analyzed the behavioral and metabolic response of the spider Polybetes pythagoricus at different times of exposure to the organophosphate pesticide chlorpyrifos. First we observed that the individuals are capable of recognizing and avoiding surfaces treated with pesticides based on a behavioral analysis. Subsequently, we characterized cuticular hydrocarbons as a possible barrier against pesticides. Then we observed that the pesticide provoked histological damage, mainly at the level of the midgut diverticula. Finally, we analyzed the activity of several of the spider's enzymes linked to oxidative stress after exposure to chlorpyrifos for different lengths of time (6, 24, and 48 h). We observed that catalase activity was high at the start, whereas the activity of superoxide dismutase and glutathione S-transferase changed significantly at 48 h. Lipid peroxidation became high at 6 h, but decreased at 48 h. In conclusion, although P. pythagoricus can avoid contact with chlorpyrifos, this pesticide causes activation of the antioxidant system when it enters the body. Our results make a significant contribution to the ecotoxicology of spiders. Environ Toxicol Chem 2023;42:1293-1308. © 2023 SETAC.


Subject(s)
Chlorpyrifos , Insecticides , Pesticides , Spiders , Animals , Insecticides/metabolism , Chlorpyrifos/toxicity , Spiders/metabolism , Catalase/metabolism , Pesticides/toxicity , Antioxidants/metabolism , Oxidative Stress
2.
Article in English | MEDLINE | ID: mdl-35432495

ABSTRACT

Background: Scorpions can use their pincers and/or stingers to subdue and immobilize their prey. A scorpion can thus choose between strategies involving force or venom, or both, depending on what is required to subdue its prey. Scorpions vary greatly in the size and strength of their pincers, and in the efficacy of their venom. Whether this variability is driven by their defensive or prey incapacitation functionis unknown. In this study, we test if scorpion species with different pincer morphologies and venom efficacies use these weapons differently during prey subjugation. To that end, we observed Opisthacanthus elatus and Chactas sp. with large pincers and Centruroides edwardsii and Tityus sp. with slender pincers. Methods: The scorpion pinch force was measured, and behavioral experiments were performed with hard and soft prey (Blaptica dubia and Acheta domesticus). Stinger use, sting frequency and immobilization time were measured. Results: We found that scorpions with large pincers such as O. elatus produce more force and use the stinger less, mostly subjugating prey by crushing them with the pincers. In C. edwardsii and Tityus sp. we found they use their slender and relatively weak pincers for holding the prey, but seem to predominantly use the stinger to subjugate them. On the other hand, Chactas sp. uses both strategies although it has a high pinch force. Conclusions: Our results show that scorpionspecies with massive pincers and high pinch force as O. elatus use the stinger less for prey subjugation than scorpionspecies with slenderpincers.

3.
J. venom. anim. toxins incl. trop. dis ; 28: e20210037, 2022. tab, ilus, graf
Article in English | VETINDEX | ID: biblio-1395928

ABSTRACT

Background: Scorpions can use their pincers and/or stingers to subdue and immobilize their prey. A scorpion can thus choose between strategies involving force or venom, or both, depending on what is required to subdue its prey. Scorpions vary greatly in the size and strength of their pincers, and in the efficacy of their venom. Whether this variability is driven by their defensive or prey incapacitation functionis unknown. In this study, we test if scorpion species with different pincer morphologies and venom efficacies use these weapons differently during prey subjugation. To that end, we observed Opisthacanthus elatus and Chactas sp. with large pincers and Centruroides edwardsii and Tityus sp. with slender pincers. Methods: The scorpion pinch force was measured, and behavioral experiments were performed with hard and soft prey (Blaptica dubia and Acheta domesticus). Stinger use, sting frequency and immobilization time were measured. Results: We found that scorpions with large pincers such as O. elatus produce more force and use the stinger less, mostly subjugating prey by crushing them with the pincers. In C. edwardsii and Tityus sp. we found they use their slender and relatively weak pincers for holding the prey, but seem to predominantly use the stinger to subjugate them. On the other hand, Chactas sp. uses both strategies although it has a high pinch force. Conclusions: Our results show that scorpionspecies with massive pincers and high pinch force as O. elatus use the stinger less for prey subjugation than scorpionspecies with slenderpincers.(AU)


Subject(s)
Animals , Predatory Behavior/physiology , Scorpions/physiology , Scorpion Stings/physiopathology
4.
Chemosphere ; 262: 127785, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33182149

ABSTRACT

Although glyphosate is widely used for weed pest control, it might have negative side effects on natural enemies. Wolf spiders are one of the most representative predators found on soybean crops in Uruguay, preying on a wide variety of potential pests. However, the sublethal effects that pesticides might have on this group have been poorly explored for South American species. Herein, we explored the sublethal effects of glyphosate on the functional response of the wolf spider Hogna cf. bivittata against three potential pest insects, namely ant (Acromyrmex sp.), caterpillar (Anticarsia gemmatalis), and cricket (Miogryllus sp.). We contaminated residually adult females of the species Hogna cf. bivittata with glyphosate (Roundup®) and compared their functional response against non-contaminated spiders. We did not observe any mortality during the study. We found that overall Hogna cf. bivittata showed a functional response type II against crickets and caterpillars but no functional response to ants. Contaminated spiders killed less ants and caterpillars in comparison to the control group, probably as a consequence of the irritating effects of glyphosate. We did not observe differences in functional response to crickets at the evaluated densities, probably as a consequence of the low capture rate against this prey. Although glyphosate does not specifically target spiders, it might have negative sublethal effects on native predators such as Hogna cf. bivittata. Further studies should explore effect of glyphosate on other native predators from South American crops.


Subject(s)
Glycine/analogs & derivatives , Pesticides/toxicity , Spiders/drug effects , Animals , Ants , Crops, Agricultural , Female , Glycine/toxicity , Gryllidae , Moths , Predatory Behavior/drug effects , Uruguay , Glyphosate
5.
Zoology (Jena) ; 140: 125797, 2020 06.
Article in English | MEDLINE | ID: mdl-32330702

ABSTRACT

Spider wasps of the genus Minagenia have evolved koinobiontism as a relatively rare life strategy within the widely diversified hymenopteran family Pompilidae. In this study, we evaluated several aspects of the parasitic strategy of the wasp Minagenia sp. (hereafter, Minagenia) - namely host specificity, ontogeny, and sex determination as a function of host size. We found that Minagenia is highly host specific, being associated only with the genus Lycosa from the family Lycosidae, namely Lycosa u-album (Mello-Leitão, 1938), Lycosa erythrognatha (Lucas, 1836) and Lycosa poliostoma (Koch, 1847) with a parasitism incidence of 18.9%, 15.8% and 12.5%, respectively. Both ecological and taxonomical host traits determine the host selection and sex allocation of Minagenia female wasps. Charnov's host-size model explains Minagenia's host-size-dependent sex ratio in combination with the effect of host development stage, host species, and host foraging strategy. We also found that the final instar larva of Minagenia induces behavioural changes in spider hosts. The manipulated spider builds a protective silk chamber as a shelter for parasitoid pupation. Our results suggest that host manipulation seems to be narrowly connected with koinobiont life style throughout Hymenoptera. This study provides new information about the host-parasitoid koinobiont life strategy among spider wasps, which probably arose convergently in distant taxonomical groups within Pompilidae.


Subject(s)
Reproduction/physiology , Wasps/physiology , Animals , Behavior, Animal , Female , Host-Parasite Interactions , Larva/physiology , Life Cycle Stages , Male
6.
Sci Rep ; 9(1): 18040, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31772258

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 9(1): 13273, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519928

ABSTRACT

There are substantive problems associated with invasive species, including threats to endemic organisms and biodiversity. Understanding the mechanisms driving invasions is thus critical. Variable extended phenotypes may enable animals to invade into novel environments. We explored here the proposition that silk variability is a facilitator of invasive success for the highly invasive Australian house spider, Badumna longinqua. We compared the physico-chemical and mechanical properties and underlying gene expressions of its major ampullate (MA) silk between a native Sydney population and an invasive counterpart from Montevideo, Uruguay. We found that while differential gene expressions might explain the differences in silk amino acid compositions and protein nanostructures, we did not find any significant differences in silk mechanical properties across the populations. Our results accordingly suggest that B. longinqua's silk remains functionally robust despite underlying physico-chemical and genetic variability as the spider expands its range across continents. They also imply that a combination of silk physico-chemical plasticity combined with mechanical robustness might contribute more broadly to spider invasibilities.


Subject(s)
Introduced Species , Silk/chemistry , Spiders/chemistry , Tensile Strength , Animals , Biomechanical Phenomena , Species Specificity , Surface Properties
8.
J Evol Biol ; 31(7): 968-978, 2018 07.
Article in English | MEDLINE | ID: mdl-29658162

ABSTRACT

Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2-like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non-web building, but a select few species build webs. We accordingly collected MA silk from two web-building and six non-web-building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2-like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web-building and non-web-building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web-building and non-web-building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2-like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co-evolution and the ecological implications of spider silk properties.


Subject(s)
Silk , Species Specificity , Spiders/genetics , Spiders/physiology , Animals , Ecosystem , Phylogeny , Predatory Behavior
9.
Chemosphere ; 181: 241-249, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28445817

ABSTRACT

Neonicotinoids are one of the world's most extensively used insecticides, but their sub-lethal influences on non-target and beneficial organisms are not well known. Here we exposed the orb web spider Parawixia audax, which is found on arable lands in Uruguay, to a sub-lethal concentration of the broad spectrum insecticide Geonex (thiamethoxam + lambda-cyhalothrin) and monitored their web building. We collected their major ampullate silk and subjected it to tensile tests, wide-angle X-ray diffraction (WAXS) analysis, and amino acid composition analysis. Around half of the exposed spiders failed to build webs. Those that built webs produced irregular webs lacking spiral threads. The mechanical properties, nanostructures, and amino acid compositions of the silk were all significantly affected when the spiders were exposed to insecticides. We found that silk proline, glutamine, alanine and glycine compositions differed between treatments, indicating that insecticide exposure induced downregulation of the silk protein MaSp2. The spiders in the control group had stronger, tougher and more extensible silks than those in the insecticide exposed group. Our WAXS analyses showed the amorphous region nanostructures became misaligned in insecticide exposed silks, explaining their greater stiffness. While the insecticide dose we subjected P. audax to was evidently sub-lethal, the changes in silk physicochemical properties and the impairment to web building will indelibly affect their ability to catch prey.


Subject(s)
Insecticides/pharmacology , Silk/chemistry , Spiders/chemistry , Amino Acids/chemistry , Animals , Biomechanical Phenomena , Insecticides/analysis , Nanostructures , Nitriles/pharmacology , Pyrethrins/pharmacology , Silk/drug effects , Spiders/physiology , Uruguay , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL