Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(36): 20340-20351, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34486635

ABSTRACT

The formal potentials for the reversible one-electron oxidation of N,N,N',N' tetrasubstituted p-phenylenediamines in acetonitrile have been applied as a test set for benchmarking computational methods for a series of compounds with only small structural differences. The aim of the study is to propose a simple method for calculating the standard oxidation potentials, and therefore, the protocol is progressively developed by adding more terms in the energy expression. In addition, the effect of including implicit solvation models (IEFPCM, CPCM, and SMD), larger basis sets, and correlation methods are investigated. The oxidation potentials calculated using the G3MP2B3 approach with IEFPCM resulted in the best fit (R2 = 0.9624), but the slope of the correlation line, 0.74, is far from the optimal value, 1.00. B3LYP/6-311++G(d,p) and TPSSh/6-311++G(2d,p) yielded only slightly less consistent data (R2 = 0.9388 and R2 = 0.9425), but with much better slopes, 1.00 and 0.94, respectively. We conclude that it is important to investigate the basis set size and treatment of electron correlation when calculating oxidation potentials for N,N,N',N' tetrasubstituted p-phenylenediamines.

2.
Chemphyschem ; 20(1): 78-91, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30452112

ABSTRACT

Prediction of chemical shifts in organic cations is known to be a challenge. In this article we meet this challenge for α-protonated alkylpyrroles, a class of compounds not yet studied in this context, and present a combined experimental and theoretical study of the 13 C and 1 H chemical shifts in three selected pyrroles. We have investigated the importance of the solvation model, basis set, and quantum chemical method with the goal of developing a simple computational protocol, which allows prediction of 13 C and 1 H chemical shifts with sufficient accuracy for identifying such compounds in mixtures. We find that density functional theory with the B3LYP functional is not sufficient for reproducing all 13 C chemical shifts, whereas already the simplest correlated wave function model, Møller-Plesset perturbation theory (MP2), leads to almost perfect agreement with the experimental data. Treatment of solvent effects generally improves the agreement with experiment to some extent and can in most cases be accomplished by a simple polarizable continuum model. The only exception is the NH proton, which requires inclusion of explicit solvent molecules in the calculation.

3.
J Mol Model ; 24(3): 62, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29464335

ABSTRACT

In this work we investigate the level of theory necessary for reproducing the non-linear variation of the 129Xe nuclear magnetic resonance (NMR) chemical shift with the density of Xe in supercritical conditions. In detail we study how the 129Xe chemical shift depends under supercritical conditions on electron correlation, relativistic and many-body effects. The latter are included using a sequential-QM/MM methodology, in which a classical MD simulation is performed first and the chemical shift is then obtained as an average of quantum calculations of 250 MD snapshots conformations carried out for Xe n clusters (n = 2 - 8 depending on the density). The analysis of the relativistic effects is made at the level of 4-component Hartree-Fock calculations (4c-HF) and electron correlation effects are considered using second order Møller-Plesset perturbation theory (MP2). To simplify the calculations of the relativistic and electron correlation effects we adopted an additive scheme, where the calculations on the Xe n clusters are carried out at the non-relativistic Hartree-Fock (HF) level, while electron correlation and relativistic corrections are added for all the pairs of Xe atoms in the clusters. Using this approach we obtain very good agreement with the experimental data, showing that the chemical shift of 129Xe in supercritical conditions is very well described by cluster calculations at the HF level, with small contributions from relativistic and electron correlation effects.

4.
J Comput Chem ; 37(4): 395-403, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26503739

ABSTRACT

Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL
...