Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 05 16.
Article in English | MEDLINE | ID: mdl-35575476

ABSTRACT

Understanding the complex network that regulates transcription elongation requires the quantitative analysis of RNA polymerase II (Pol II) activity in a wide variety of regulatory environments. We performed native elongating transcript sequencing (NET-seq) in 41 strains of Saccharomyces cerevisiae lacking known elongation regulators, including RNA processing factors, transcription elongation factors, chromatin modifiers, and remodelers. We found that the opposing effects of these factors balance transcription elongation and antisense transcription. Different sets of factors tightly regulate Pol II progression across gene bodies so that Pol II density peaks at key points of RNA processing. These regulators control where Pol II pauses with each obscuring large numbers of potential pause sites that are primarily determined by DNA sequence and shape. Antisense transcription varies highly across the regulatory landscapes analyzed, but antisense transcription in itself does not affect sense transcription at the same locus. Our findings collectively show that a diverse array of factors regulate transcription elongation by precisely balancing Pol II activity.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Base Sequence , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/genetics
2.
Mol Cell ; 67(1): 5-18.e19, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28673542

ABSTRACT

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Nuclear Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Transcription Elongation, Genetic , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing , Animals , Antineoplastic Agents/pharmacology , Cell Cycle Proteins , Cyclin-Dependent Kinase 9/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Leukemic , HCT116 Cells , HEK293 Cells , Humans , Jurkat Cells , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Multiprotein Complexes , Nuclear Proteins/genetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Stability , Proteolysis , RNA Polymerase II/metabolism , Time Factors , Transcription Elongation, Genetic/drug effects , Transcription Factors/genetics , Transfection , Ubiquitin-Protein Ligases , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...