Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769366

ABSTRACT

Electrophilic halogenation is a widely used tool employed by medicinal chemists to either pre-functionalize molecules for further diversity or incorporate a halogen atom into drugs or drug-like compounds to solve metabolic problems or modulate off-target effects. Current methods to increase the power of halogenation rely on either the invention of new reagents or activating commercially available reagents with various additives such as Lewis or Brønsted acids, Lewis bases and hydrogen-bonding activators. There is a high demand for new reagents that can halogenate otherwise unreactive compounds under mild conditions. Here we report the invention of a class of halogenating reagents based on anomeric amides, taking advantage of the energy stored in the pyramidalized nitrogen of N-X anomeric amides as a driving force. These robust halogenating methods are compatible with a variety of functional groups and heterocycles, as exemplified on over 50 compounds (including 13 gram-scale examples and 1 flow chemistry scale-up).

2.
ACS Med Chem Lett ; 12(10): 1585-1588, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34676040

ABSTRACT

The ring strain present in azetidines can lead to undesired stability issues. Herein, we described a series of N-substituted azetidines which undergo an acid-mediated intramolecular ring-opening decomposition via nucleophilic attack of a pendant amide group. Studies were conducted to understand the decomposition mechanism enabling the design of stable analogues.

3.
Chembiochem ; 22(10): 1769-1774, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33491295

ABSTRACT

Herein, we report a general and simplified synthesis of fluorophosphonates directly from p-nitrophenylphosphonates. This FP on-demand reaction is mediated by a commercially available polymer-supported fluoride reagent that produces a variety (25 examples) of fluorophosphonates in high yields while only requiring reagent filtration for pure fluorophosphonate isolation. This reaction protocol facilitates the rapid profiling of serine hydrolases with diverse and novel sets of activated phosphonates with differential proteome reactivity. Moreover, slight modification of the procedure into a reaction-to-assay format has enabled additional screening efficiency.


Subject(s)
Fluorine/chemistry , Organophosphonates/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Humans , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Polymers/chemistry , Serine Endopeptidases/metabolism , Solid-Phase Synthesis Techniques
4.
ACS Med Chem Lett ; 10(6): 941-948, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31223452

ABSTRACT

It has been hypothesized that selective muscarinic acetylcholine receptor (mAChR) M4 subtype activation could provide therapeutic benefits to a number of neurological disorders while minimizing unwanted cholinergic side effects observed due to nonselective mAChR activation. Given the high sequence and structural homology of the orthosteric binding sites among mAChRs, achieving M4 subtype-selective activation has been challenging. Herein, we describe the discovery of a series of M4 subtype-selective agonists bearing novel carbamate isosteres. Comparison of the isosteres' electrostatic potential isosurface sheds light on key structural features for M4 subtype-selective activation. The identified key features were further illustrated in a proposed receptor-agonist interaction mode.

6.
J Med Chem ; 61(10): 4476-4504, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29613789

ABSTRACT

A major challenge in the development of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer's disease is the alignment of potency, drug-like properties, and selectivity over related aspartyl proteases such as Cathepsin D (CatD) and BACE2. The potential liabilities of inhibiting BACE2 chronically have only recently begun to emerge as BACE2 impacts the processing of the premelanosome protein (PMEL17) and disrupts melanosome morphology resulting in a depigmentation phenotype. Herein, we describe the identification of clinical candidate PF-06751979 (64), which displays excellent brain penetration, potent in vivo efficacy, and broad selectivity over related aspartyl proteases including BACE2. Chronic dosing of 64 for up to 9 months in dog did not reveal any observation of hair coat color (pigmentation) changes and suggests a key differentiator over current BACE1 inhibitors that are nonselective against BACE2 in later stage clinical development.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/metabolism , Drug Design , Hypopigmentation , Protease Inhibitors , Pyrans , Skin Pigmentation/drug effects , Thiazines , Thiazoles , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/drug effects , Cells, Cultured , Dogs , Humans , Hypopigmentation/chemically induced , Male , Melanocytes/drug effects , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Protease Inhibitors/administration & dosage , Protease Inhibitors/adverse effects , Protease Inhibitors/chemistry , Protein Conformation , Pyrans/administration & dosage , Pyrans/adverse effects , Pyrans/chemistry , Thiazines/administration & dosage , Thiazines/adverse effects , Thiazines/chemistry , Thiazoles/administration & dosage , Thiazoles/adverse effects , Thiazoles/chemistry
7.
J Med Chem ; 60(20): 8538-8551, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28957634

ABSTRACT

As part of our effort in identifying phosphodiesterase (PDE) 4B-preferring inhibitors for the treatment of central nervous system (CNS) disorders, we sought to identify a positron emission tomography (PET) ligand to enable target occupancy measurement in vivo. Through a systematic and cost-effective PET discovery process, involving expression level (Bmax) and biodistribution determination, a PET-specific structure-activity relationship (SAR) effort, and specific binding assessment using a LC-MS/MS "cold tracer" method, we have identified 8 (PF-06445974) as a promising PET lead. Compound 8 has exquisite potency at PDE4B, good selectivity over PDE4D, excellent brain permeability, and a high level of specific binding in the "cold tracer" study. In subsequent non-human primate (NHP) PET imaging studies, [18F]8 showed rapid brain uptake and high target specificity, indicating that [18F]8 is a promising PDE4B-preferring radioligand for clinical PET imaging.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Phosphodiesterase Inhibitors/metabolism , Positron-Emission Tomography/methods , Animals , Cerebral Cortex/metabolism , Chromatography, Liquid , Drug Discovery , Macaca fascicularis , Radioligand Assay , Structure-Activity Relationship , Tandem Mass Spectrometry
8.
J Med Chem ; 60(18): 7835-7849, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28853885

ABSTRACT

Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of 12, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine 12.


Subject(s)
Drug Design , Fructokinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Crystallography, X-Ray , Fructokinases/chemistry , Fructokinases/metabolism , Humans , Male , Molecular Docking Simulation , Pyridines/chemistry , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley
9.
Xenobiotica ; 46(12): 1112-1121, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26947511

ABSTRACT

1.The first generation 5HT-4 partial agonist, 4-{4-[4-Tetrahydrofuran-3-yloxy)-benzo[d]isoxazol-3-yloxymethyl]-piperidin-1-ylmethyl}-tetrahydropyran-4-ol, PF-4995274 (TBPT), was metabolized to N-dealkylated (M1) and an unusual, cyclized oxazolidine (M2) metabolites. M1 and M2 demonstrated pharmacological activity at 5HT receptor subtypes warranting further investigation into their dispositional properties in humans; M2 was a minor component in vitro but was the pre-dominant metabolite identified in human plasma. 2.To shift metabolism away from the piperidine ring of TBPT, a series of heterocyclic replacements were designed, synthesized, and profiled. Groups including azetidines, pyrrolidines, as well as functionalized piperidines were evaluated with the goal of identifying an alternative group that maintained the desired potency, functional activity, and reduced turnover in human hepatocytes. 3.Activities of 4-substituted piperidines or pyrrolidine analogs at the pharmacological target were not significantly altered, but the same metabolic pathways of N-dealkylation and oxazolidine formation were still observed. Altering these to bridged ring systems lowered oxazolidine metabolite formation, but not N-dealkylation. 4.The effort concluded with identification of azetidines as second-generation 5HT4 partial agonists. These were neither metabolized via N-dealkylation nor converted to cyclized oxazolidine metabolites rather oxidized on the isoxazole ring. The use of azetidine as a replacement for aliphatic aza-heterocyclic rings in drug design to alter drug metabolism and pharmacology is discussed.


Subject(s)
Azetidines/pharmacology , Piperidines/pharmacology , Serotonin/metabolism , Azetidines/metabolism , Humans , Piperidines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...