Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37374390

ABSTRACT

Liposomes and other nanoparticles have been widely studied as innovative nanomaterials because of their unique properties. Pyridinium salts, on the basis of 1,4-dihydropyridine (1,4-DHP) core, have gained significant attention due to their self-assembling properties and DNA delivery activity. This study aimed to synthesize and characterize original N-benzyl substituted 1,4-dihydropyridines and evaluate the influence on structure modifications on compound physicochemical and self-assembling properties. Studies of monolayers composed of 1,4-DHP amphiphiles revealed that the mean molecular areas values were dependent on the compound structure. Therefore, the introduction of N-benzyl substituent to the 1,4-DHP ring enlarged the mean molecular area by almost half. All nanoparticle samples obtained by ethanol injection method possessed positive surface charge and average diameter of 395-2570 nm. The structure of the cationic head-group affects the size of the formed nanoparticles. The diameter of lipoplexes formed by 1,4-DHP amphiphiles and mRNA at nitrogen/phosphate (N/P) charge ratios of 1, 2, and 5 were in the range of 139-2959 nm and were related to the structure of compound and N/P charge ratio. The preliminary results indicated that more prospective combination are the lipoplexes formed by pyridinium moieties containing N-unsubstituted 1,4-DHP amphiphile 1 and pyridinium or substituted pyridinium moieties containing N-benzyl 1,4-DHP amphiphiles 5a-c at N/P charge ratio of 5, which would be good candidates for potential application in gene therapy.

2.
Molecules ; 29(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38202746

ABSTRACT

One of the most important steps in the synthesis of 1,4-dihydropyridine (1,4-DHP) amphiphiles is the bromination of methyl groups in positions 2 and 6 of the entire ring. However, up to now, only N-bromosuccinimide was mainly used for bromination 1,4-DHPs. In this work, the synthesis of bis-1,4-DHP derivatives with ethyl and dodecyl ester groups attached to 1,4-DHP ring at positions 3 and 5 was performed by Hantzsch synthesis. The experimental studies were carried out to find out the best conditions and the agent for the tetra bromination of bis-1,4-DHP methyl groups at positions 2 and 6. Four different brominating agents were screened. The use of pyridinium bromide-perbromide in ethyl acetate was found to be optimal for the bromination of methyl groups. The bromination reaction was followed by the synthesis of cationic pyridine moiety containing amphiphilic bis-1,4-DHP derivatives. By nucleophilic substitution of bromine with various substituted pyridines, 12 new amphiphilic bis-1,4-DHP derivatives were obtained. Evaluation of self-assembling properties of tetracationic bis-1,4-dihydropyridine derivatives by dynamic light scattering (DLS) measurements was also performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...