Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(10): 102001, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34533343

ABSTRACT

We perform the first global fit to inclusive B→X_{s}γ measurements using a model-independent treatment of the nonperturbative b-quark distribution function, with next-to-next-to-leading logarithmic resummation and O(α_{s}^{2}) fixed-order contributions. The normalization of the B→X_{s}γ decay rate, given by |C_{7}^{incl}V_{tb}V_{ts}^{*}|^{2}, is sensitive to physics beyond the standard model (SM). We determine |C_{7}^{incl}V_{tb}V_{ts}^{*}|=(14.77±0.51_{fit}±0.59_{theory}±0.08_{param})×10^{-3}, in good agreement with the SM prediction, and the b-quark mass m_{b}^{1S}=(4.750±0.027_{fit}±0.033_{theory}±0.003_{param}) GeV. Our results suggest that the uncertainties in the extracted B→X_{s}γ rate have been underestimated by up to a factor of 2, leaving more room for beyond-SM contributions.

2.
Phys Rev Lett ; 109(24): 241802, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23368307

ABSTRACT

We perform a comprehensive statistical analysis of the standard model (SM) with three and four generations using the latest Higgs search results from LHC and Tevatron, the electroweak precision observables measured at LEP and SLD, and the latest determinations of M(W), m(t), and α(s). For the three-generation case we analyze the tensions in the electroweak fit by removing individual observables from the fit and comparing their predicted values with the measured ones. In particular, we discuss the impact of the Higgs search results on the deviations of the electroweak precision observables from their best-fit values. Our indirect prediction of the top mass is m(t) =175.7(-2.2)(+3.0) GeV at 68.3% C.L., which is in good agreement with the direct measurement. We also plot the preferred area in the M(W)-m(t) plane. The best-fit Higgs boson mass is 126.0 GeV. For the case of the SM with a perturbative sequential fourth fermion generation (SM4) we discuss the deviations of the Higgs signal strengths from their best-fit values. The H → γγ signal strength now disagrees with its best-fit SM4 value at more than 4σ. We perform a likelihood-ratio test to compare the SM and SM4 and show that the SM4 is excluded at 5.3σ. Without the Tevatron data on H → bb the significance drops to 4.8σ.

SELECTION OF CITATIONS
SEARCH DETAIL
...