Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Periodontol ; 71(2): 226-37, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10711613

ABSTRACT

BACKGROUND: Periodontal wound healing and regeneration are influenced by a multitude of factors. While many in vitro investigations have compared the proliferation of periodontal ligament (PDL) cells and gingival fibroblasts (GF), there are no reports directly comparing the abilities of these 2 cell types to fill a wound site. As such, the goals of this research were: 1) to develop an in vitro model of wound healing which would allow for the investigation of the biologic basis of periodontal wound healing and regeneration and 2) to compare the rates of PDL cells and GF to fill an in vitro wound site. METHODS: Using both human PDL cells and GF confluent cultures, in vitro wounds were mechanically created, removing a 3 mm wide band of the cell layer. Wounded cultures were then incubated for time periods up to 12 days in media containing fetal bovine serum (FBS) concentrations (0, 0.1, 1, 5, 10, and 20%) as appropriate for each experiment. Slides were fixed, stained, and cells quantified within the wound boundaries by computer-assisted histomorphometry. The effect of wounding a cell layer was determined by comparing wounded cells as described above with a cell layer margin created without physically disrupting the cell layer. RESULTS: The in vitro model for periodontal wound healing established in this study showed that GF fill in the wound site at a significantly (P <0.0025) faster rate than PDL cells over 12 days of healing. In addition, PDL cells and GF were found to have unique concentration-dependent responses to FBS (P<0.0025). It was also shown that wounding resulted in a significant delay (P <0.01) in the initial healing response of an in vitro wound. CONCLUSION: This in vitro model demonstrated that the characteristics of wound healing are dependent on cell type, disruption (wounding) of the cell layer, and serum concentration. In addition, this model has incorporated both proliferation and migration to provide the first direct evidence demonstrating GF has a significantly greater ability to fill a wound site than PDL cells. This in vitro model may be utilized in future investigations of the biologic basis of periodontal wound healing.


Subject(s)
Fibroblasts/physiology , Gingiva/physiology , Periodontal Ligament/physiology , Wound Healing/physiology , Analysis of Variance , Animals , Cattle , Cell Count , Cell Division , Cell Movement , Cells, Cultured , Culture Media , Fetal Blood/cytology , Fibroblasts/pathology , Fibroblasts/ultrastructure , Gingiva/cytology , Gingiva/pathology , Humans , Models, Biological , Periodontal Ligament/cytology , Periodontal Ligament/pathology , Regeneration/physiology , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...