Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(4): 6484-6498, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823903

ABSTRACT

In this paper, we report on waveguide-type modified uni-traveling-carrier photodiodes (MUTC-PDs) providing a record high output power level for non-resonant photodiodes in the WR3.4 band. Indium phosphide (InP) based waveguide-type 1.55 µm MUTC-PDs have been fabricated and characterized thoroughly. Maximum output powers of -0.6 dBm and -2.7 dBm were achieved at 240 GHz and 280 GHz, respectively. This has been accomplished by an optimized layer structure and doping profile design that takes transient carrier dynamics into account. An energy-balance model has been developed to study and optimize carrier transport at high optical input intensities. The advantageous THz capabilities of the optimized MUTC layer structure are confirmed by experiments revealing a transit time limited cutoff frequency of 249 GHz and a saturation photocurrent beyond 20 mA in the WR3.4 band. The responsivity for a 16 µm long waveguide-type THz MUTC-PD is found to be 0.25 A/W. In addition, bow-tie antenna integrated waveguide-type MUTC-PDs are fabricated and reported to operate up to 0.7 THz above a received power of -40 dBm.

2.
Opt Express ; 29(14): 21629-21638, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34265946

ABSTRACT

THz communications is envisaged for wide bandwidth mobile communications eventually reaching data capacities exceeding 100 Gbit/s. The technology enabling compact chip-integrated transceivers with highly directive, steerable antennas is the key challenge at THz frequencies to overcome the very high free-space path losses and to support user mobility. In this article, we report on mobile and multi-user THz communications using a photonic THz transmitter chip featuring 1D beam steering for the first time. In the proposed approach, 1D THz beam steering is achieved by using a photodiode excited leaky-wave antenna (LWA) in the transmitter chip. The on-chip LWA allows to steer the directive THz beam from 6° to 39° within the upper WR3-band (0.28-0.33 THz). The antenna's directivity is 14 dBi which is further increased to 23 dBi using an additional hemicylindrical Teflon lens. The 3-dB beam width and coherence bandwidth of the fabricated THz transmitter chips with lens are 9° and 12 GHz, respectively. The proposed approach allows steering the THz beam via the beat frequency of an optical heterodyne system at a speed up to 28°/s. Without using a THz amplifier in the transmitter chip, a data rate of 24 Gbit/s is achieved for a single user for all beam directions and at short wireless distances up to 6 cm. The wireless distance is successfully increased to 32 cm for a lower data rate of 4 Gbit/s, still without using a transmitter amplifier. Also, multi-user THz communications and the overall capacity of the developed THz transmitter chip is studied revealing that up to 12 users could be supported together with a total wireless data capacity of 48 Gbit/s. Fully integrated 2D transmitter chips are expected to reach wireless distances of several meters without additional amplifiers.

SELECTION OF CITATIONS
SEARCH DETAIL
...