Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 18(8): e1010376, 2022 08.
Article in English | MEDLINE | ID: mdl-35994477

ABSTRACT

The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.


Subject(s)
Histone Deacetylase 1 , Histone Deacetylase Inhibitors , Acetylation , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism
3.
PLoS One ; 14(4): e0214514, 2019.
Article in English | MEDLINE | ID: mdl-30958843

ABSTRACT

The kidney is especially sensitive to diseases associated with overactivation of the complement system. While most of these diseases affect kidney glomeruli and the microvasculature, there is also evidence for tubulointerstitial deposition of complement factors. Complement inactivating factors on cell membranes comprise CD55, CD59 and CD46, which is also termed membrane cofactor protein (MCP). CD46 has been described as localized to glomeruli, but especially also to proximal tubular epithelial cells (RPTECs). However, human cell culture models to assess CD46 function on RPTECs are still missing. Therefore, we here performed gene editing of RPTEC/TERT1 cells generating a monoclonal CD46-/- cell line that did not show changes of the primary cell like characteristics. In addition, factor I and CD46-mediated cleavage of C4b into soluble C4c and membrane deposited C4d was clearly reduced in the knock-out cell line as compared to the maternal cells. Thus, human CD46-/- proximal tubular epithelial cells will be of interest to dissect the roles of the epithelium and the kidney in various complement activation mediated tubulointerstitial pathologies or in studying CD46 mediated uropathogenic internalization of bacteria. In addition, this gives proof-of-principle, that telomerized cells can be used in the generation of knock-out, knock-in or any kind of reporter cell lines without losing the primary cell characteristics of the maternal cells.


Subject(s)
CRISPR-Cas Systems , Complement Activation , Epithelial Cells/cytology , Gene Knockout Techniques , Membrane Cofactor Protein/genetics , Telomerase/metabolism , Cell Line , Complement C4/chemistry , Complement C4b/chemistry , Gene Editing , Humans , Kidney Tubules/cytology , Telomere/ultrastructure , gamma-Glutamyltransferase/metabolism
4.
Nat Commun ; 6: 10237, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26674669

ABSTRACT

Genome engineering has been greatly enhanced by the availability of Cas9 endonuclease that can be targeted to almost any genomic locus using so called guide RNAs (gRNAs). However, the introduction of foreign DNA sequences to tag an endogenous gene is still cumbersome as it requires the synthesis or cloning of homology templates. Here we present a strategy that enables the tagging of endogenous loci using one generic donor plasmid. It contains the tag of interest flanked by two gRNA recognition sites that allow excision of the tag from the plasmid. Co-transfection of cells with Cas9, a gRNA specifying the genomic locus of interest, the donor plasmid and a cassette-specific gRNA triggers the insertion of the tag by a homology-independent mechanism. The strategy is efficient and delivers clones that display a predictable integration pattern. As showcases we generated NanoLuc luciferase- and TurboGFP-tagged reporter cell lines.


Subject(s)
CRISPR-Cas Systems/genetics , DNA/genetics , Genetic Engineering/methods , Genome, Human/genetics , RNA, Guide, Kinetoplastida/genetics , Bacterial Proteins , CRISPR-Associated Protein 9 , Cell Line , Deoxyribonuclease I , Endonucleases , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Humans , Luciferases/genetics , Microscopy, Fluorescence , Plasmids , Reverse Transcriptase Polymerase Chain Reaction
5.
Viruses ; 6(9): 3663-82, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25256396

ABSTRACT

Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information's (NCBI's) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences.


Subject(s)
Databases, Nucleic Acid , Filoviridae/genetics , Evolution, Molecular , Filoviridae/classification , Humans , Selection, Genetic
6.
Aging Cell ; 13(5): 946-50, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24863242

ABSTRACT

Replicative senescence is a fundamental tumor-suppressive mechanism triggered by telomere erosion that results in a permanent cell cycle arrest. To understand the impact of telomere shortening on gene expression, we analyzed the transcriptome of diploid human fibroblasts as they progressed toward and entered into senescence. We distinguished novel transcription regulation due to replicative senescence by comparing senescence-specific expression profiles to profiles from cells arrested by DNA damage or serum starvation. Only a small specific subset of genes was identified that was truly senescence-regulated and changes in gene expression were exacerbated from presenescent to senescent cells. The majority of gene expression regulation in replicative senescence was shown to occur due to telomere shortening, as exogenous telomerase activity reverted most of these changes.


Subject(s)
Cellular Senescence/genetics , Gene Expression Regulation , Cell Line , DNA Damage , Fibroblasts/cytology , Fibroblasts/physiology , Genomics , Humans , Telomerase/metabolism
7.
Nat Struct Mol Biol ; 21(2): 167-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24413054

ABSTRACT

The mechanism of activation of the alternative lengthening of telomeres (ALT) pathway of mammalian chromosome-end maintenance has been unclear. We have now discovered that co-depletion of the histone chaperones ASF1a and ASF1b in human cells induced all hallmarks of ALT in both primary and cancer cells. These included the formation of ALT-associated PML (promyelocytic leukemia) bodies (APBs), the presence of extrachromosomal telomeric DNA species, an elevated frequency of telomeric sister chromatid exchanges (t-SCE) events and intertelomeric exchange of an integrated tag. The induction of ALT characteristics in this setting led to the simultaneous suppression of telomerase. We determined that ALT induction is positively regulated by the proteins RAD17 and BLM and negatively regulated by EXO1 and DNA2. The induction of ALT phenotypes as a consequence of ASF1 depletion strongly supports the hypothesis that ALT is a consequence of histone management dysfunction.


Subject(s)
Cell Cycle Proteins/physiology , Molecular Chaperones/physiology , Telomere Homeostasis/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Replication , Gene Expression Regulation , Humans , Kinetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Telomerase/genetics , Telomerase/metabolism
8.
Worm ; 2(1): e21073, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-24058854

ABSTRACT

In most eukaryotic organisms with a linear genome, the telomerase complex is essential for telomere maintenance and, thus, for genomic integrity. Proper telomerase function in stem and germ cell populations counteracts replication-dependent telomere shortening. On the other hand, repression of telomerase expression in most somatic tissues limits the proliferative potential of these cells through the induction of a permanent cell cycle arrest termed senescence upon critical telomere erosion. Thus, senescence, induced by telomere shortening and subsequent DNA damage signaling, is an essential tumor suppressive mechanism, emphasized by the fact that repression of telomerase is lost in about 90% of cancers, endowing them with unlimited proliferative potential. In 10% of cancers telomeres are maintained using the recombination-based alternative mechanism of telomere lengthening (ALT). To date, ALT and ALT-like mechanisms have only been described in the context of individual cells such as cancer cells and yeast. Now, several "survivor" strains of the nematode Caenorhabditis elegans have been generated that can propagate despite mutations of the telomerase gene. These nematode strains represent the first multi-cellular organism with canonical telomerase that can survive in the absence of a functional telomerase pathway.

9.
Genome Biol ; 13(4): R25, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22512868

ABSTRACT

BACKGROUND: Gene expression is controlled globally and at multiple levels in response to environmental stress, but the relationships among these dynamic regulatory changes are not clear. Here we analyzed global regulation during different stress conditions in fission yeast, Schizosaccharomyces pombe, combining dynamic genome-wide data on mRNA, translation, and protein profiles. RESULTS: We observed a strong overall concordance between changes in mRNAs and co-directional changes in translation, for both induced and repressed genes, in response to three conditions: oxidative stress, heat shock, and DNA damage. However, approximately 200 genes each under oxidative and heat stress conditions showed discordant regulation with respect to mRNA and translation profiles, with genes and patterns of regulation being stress-specific. For oxidative stress, we also measured dynamic profiles for 2,147 proteins, comprising 43% of the proteome. The mRNAs induced during oxidative stress strongly correlated with increased protein expression, while repressed mRNAs did not relate to the corresponding protein profiles. Overall changes in relative protein expression correlated better with changes in mRNA expression than with changes in translational efficiency. CONCLUSIONS: These data highlight a global coordination and fine-tuning of gene regulation during stress that mostly acts in the same direction at the levels of transcription and translation. In the oxidative stress condition analyzed, transcription dominates translation to control protein abundance. The concordant regulation of transcription and translation leads to the expected adjustment in protein expression only for up-regulated mRNAs. These patterns of control might reflect the need to balance protein production for stress survival given a limited translational capacity.


Subject(s)
Gene Expression Regulation, Fungal , Protein Biosynthesis , Proteome/metabolism , Schizosaccharomyces/metabolism , Transcriptome , Adaptation, Biological , Environment , Genes, Fungal , Heat-Shock Response , Oxidative Stress , Proteome/genetics , Proteomics/methods , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Schizosaccharomyces/genetics , Up-Regulation
10.
EMBO J ; 31(8): 2024-33, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22425786

ABSTRACT

To counteract replication-dependent telomere shortening most eukaryotic cells rely on the telomerase pathway, which is crucial for the maintenance of proliferative potential of germ and stem cell populations of multicellular organisms. Likewise, cancer cells usually engage the telomerase pathway for telomere maintenance to gain immortality. However, in ∼10% of human cancers telomeres are maintained through telomerase-independent alternative lengthening of telomeres (ALT) pathways. Here, we describe the generation and characterization of C. elegans survivors in a strain lacking the catalytic subunit of telomerase and the nematode telomere-binding protein CeOB2. These clonal strains, some of which have been propagated for >180 generations, represent the first example of a multicellular organism with canonical telomeres that can survive without a functional telomerase pathway. The animals display the heterogeneous telomere length characteristic for ALT cells, contain single-stranded C-circles, a transcription profile pointing towards an adaptation to chronic stress and are therefore a unique and valuable tool to decipher the ALT mechanism.


Subject(s)
Caenorhabditis elegans/enzymology , Caenorhabditis elegans/growth & development , Telomerase/deficiency , Telomere-Binding Proteins/deficiency , Telomere/metabolism , Animals , Caenorhabditis elegans/genetics , Survival Analysis
11.
Dev Cell ; 22(2): 446-58, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22264802

ABSTRACT

Nuclear pore complexes (NPCs) are built from ∼30 different proteins called nucleoporins or Nups. Previous studies have shown that several Nups exhibit cell-type-specific expression and that mutations in NPC components result in tissue-specific diseases. Here we show that a specific change in NPC composition is required for both myogenic and neuronal differentiation. The transmembrane nucleoporin Nup210 is absent in proliferating myoblasts and embryonic stem cells (ESCs) but becomes expressed and incorporated into NPCs during cell differentiation. Preventing Nup210 production by RNAi blocks myogenesis and the differentiation of ESCs into neuroprogenitors. We found that the addition of Nup210 to NPCs does not affect nuclear transport but is required for the induction of genes that are essential for cell differentiation. Our results identify a single change in NPC composition as an essential step in cell differentiation and establish a role for Nup210 in gene expression regulation and cell fate determination.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/metabolism , Muscle Development/physiology , Neurons/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/physiology , Active Transport, Cell Nucleus , Animals , Biomarkers/metabolism , Blotting, Western , Cell Proliferation , Embryonic Stem Cells/cytology , Gene Expression Profiling , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Neurons/cytology , Nuclear Pore Complex Proteins/antagonists & inhibitors , Nuclear Pore Complex Proteins/genetics , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction
12.
PLoS One ; 6(6): e21407, 2011.
Article in English | MEDLINE | ID: mdl-21760879

ABSTRACT

Telomeres are nucleoprotein complexes which protect the ends of linear chromosomes from detection as DNA damage and provide a sequence buffer against replication-associated shortening. In mammals, telomeres consist of repetitive DNA sequence (TTAGGG) and associated proteins. The telomeric core complex is called shelterin and is comprised of the proteins TRF1, TRF2, POT1, TIN2, TPP1 and RAP1. Excessive telomere shortening or de-protection of telomeres through the loss of shelterin subunits allows the detection of telomeres as DNA damage, which can be visualized as DNA damage protein foci at chromosome ends called TIF (Telomere Dysfunction-Induced Foci). We sought to exploit the TIF phenotype as marker for telomere dysfunction to identify novel genes involved in telomere protection by siRNA-mediated knock-down of a set of 386 candidates. Here we report the establishment, specificity and feasibility of such a screen and the results of the genes tested. Only one of the candidate genes showed a unique TIF phenotype comparable to the suppression of the main shelterin components TRF2 or TRF1 and that gene was identified as a TRF1-like pseudogene. We also identified a weak TIF phenotype for SKIIP (SNW1), a splicing factor and transcriptional co-activator. However, the knock-down of SKIIP also induced a general, not telomere-specific DNA damage response, which complicates conclusions about a telomeric role. In summary, this report is a technical demonstration of the feasibility of a cell-based screen for telomere deprotection with the potential of scaling it to a high-throughput approach.


Subject(s)
RNA, Small Interfering/genetics , Telomere/genetics , DNA Damage/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Phenotype , Shelterin Complex , Telomere-Binding Proteins
13.
J Biol Chem ; 285(36): 27859-68, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20622014

ABSTRACT

Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation, Fungal , Meiosis/genetics , Poly(A)-Binding Protein II/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/genetics , Exosomes/metabolism , Gene Deletion , Poly(A)-Binding Protein II/deficiency , Poly(A)-Binding Protein II/genetics , RNA, Messenger/genetics , RNA, Untranslated/genetics , RNA-Binding Proteins/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Transcription, Genetic , Up-Regulation , mRNA Cleavage and Polyadenylation Factors/metabolism
14.
Mol Cell ; 37(1): 34-45, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20129053

ABSTRACT

Poly(A)-binding proteins (PABPs) are important to eukaryotic gene expression. In the nucleus, the PABP PABPN1 is thought to function in polyadenylation of pre-mRNAs. Deletion of fission yeast pab2, the homolog of mammalian PABPN1, results in transcripts with markedly longer poly(A) tails, but the nature of the hyperadenylated transcripts and the mechanism that leads to RNA hyperadenylation remain unclear. Here we report that Pab2 functions in the synthesis of noncoding RNAs, contrary to the notion that PABPs function exclusively on protein-coding mRNAs. Accordingly, the absence of Pab2 leads to the accumulation of polyadenylated small nucleolar RNAs (snoRNAs). Our findings suggest that Pab2 promotes poly(A) tail trimming from pre-snoRNAs by recruiting the nuclear exosome. This work unveils a function for the nuclear PABP in snoRNA synthesis and provides insights into exosome recruitment to polyadenylated RNAs.


Subject(s)
Exosomes/physiology , Poly(A)-Binding Protein II/physiology , RNA, Small Nucleolar/biosynthesis , Schizosaccharomyces pombe Proteins/physiology , Schizosaccharomyces/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Genome, Fungal , Oligonucleotide Array Sequence Analysis , Poly(A)-Binding Protein II/genetics , Polyadenylation , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics
15.
PLoS Genet ; 5(8): e1000626, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19714215

ABSTRACT

The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high transcription of MBF target genes and loss of their cell cycle-regulated expression, similar to deletion of nrm1. Genome-wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites, most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast, which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback. Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle , Feedback, Physiological , Homeodomain Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Down-Regulation , Gene Expression Regulation, Fungal , Homeodomain Proteins/genetics , Promoter Regions, Genetic , Protein Binding , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/genetics , Transcription, Genetic
16.
Int Rev Cell Mol Biol ; 271: 199-251, 2008.
Article in English | MEDLINE | ID: mdl-19081544

ABSTRACT

The regulation of gene expression is fundamental to diverse biological processes, including cell growth and division, adaptation to environmental stress, as well as differentiation and development. Gene expression is controlled at multiple levels from transcription to protein degradation. The regulation at the level of translation, from specific transcripts to entire transcriptomes, adds considerable richness and sophistication to gene regulation. The past decade has provided much insight into the diversity of mechanisms and strategies to regulate translation in response to external or internal factors. Moreover, the increased application of different global approaches now provides a wealth of information on gene expression control from a genome-wide perspective. Here, we will (1) describe aspects of mRNA processing and translation that are most relevant to translational regulation, (2) review both well-known and emerging concepts of translational regulation, and (3) survey recent approaches to analyze translational and related posttranscriptional regulation at genome-wide levels.


Subject(s)
Eukaryotic Cells/physiology , Gene Expression Profiling , Gene Expression Regulation/physiology , Protein Biosynthesis/physiology , Animals , Humans
17.
Nucleic Acids Res ; 36(Database issue): D637-40, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18000002

ABSTRACT

The Biological General Repository for Interaction Datasets (BioGRID) database (http://www.thebiogrid.org) was developed to house and distribute collections of protein and genetic interactions from major model organism species. BioGRID currently contains over 198 000 interactions from six different species, as derived from both high-throughput studies and conventional focused studies. Through comprehensive curation efforts, BioGRID now includes a virtually complete set of interactions reported to date in the primary literature for both the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. A number of new features have been added to the BioGRID including an improved user interface to display interactions based on different attributes, a mirror site and a dedicated interaction management system to coordinate curation across different locations. The BioGRID provides interaction data with monthly updates to Saccharomyces Genome Database, Flybase and Entrez Gene. Source code for the BioGRID and the linked Osprey network visualization system is now freely available without restriction.


Subject(s)
Databases, Genetic , Gene Regulatory Networks , Protein Interaction Mapping , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Database Management Systems , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Internet , Mice , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , User-Computer Interface
18.
PLoS Biol ; 5(6): e155, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17550305

ABSTRACT

Protein phosphatase 2A (PP2A) is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation. To study whether and how maturation of the C subunit is coupled with holoenzyme assembly, we analyzed PP2A biogenesis in yeast. Here we show that the generation of the catalytically active C subunit depends on the physical and functional interaction between RRD2 and the structural subunit, TPD3. The phenotype of the tpd3Delta strain is therefore caused by impaired, rather than increased, PP2A activity. TPD3/RRD2-dependent C subunit maturation is under the surveillance of the PP2A methylesterase, PPE1, which upon malfunction of PP2A biogenesis, prevents premature generation of the active C subunit and holoenzyme assembly by counteracting the untimely methylation of the C subunit. We propose a novel model of PP2A biogenesis in which a tightly controlled activation cascade protects cells from untargeted activity of the free catalytic PP2A subunit.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Phosphoprotein Phosphatases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Cell Cycle Proteins/metabolism , Enzyme Activation/physiology , Holoenzymes/metabolism , Methylation , Models, Biological , Phosphoprotein Phosphatases/biosynthesis , Protein Phosphatase 2 , Substrate Specificity
19.
Genome Biol ; 8(5): R73, 2007.
Article in English | MEDLINE | ID: mdl-17477863

ABSTRACT

BACKGROUND: Recent studies in comparative genomics demonstrate that interspecies comparison represents a powerful tool for identifying both conserved and specialized biologic processes across large evolutionary distances. All cells must adjust to environmental fluctuations in metal levels, because levels that are too low or too high can be detrimental. Here we explore the conservation of metal homoeostasis in two distantly related yeasts. RESULTS: We examined genome-wide gene expression responses to changing copper and iron levels in budding and fission yeast using DNA microarrays. The comparison reveals conservation of only a small core set of genes, defining the copper and iron regulons, with a larger number of additional genes being specific for each species. Novel regulatory targets were identified in Schizosaccharomyces pombe for Cuf1p (pex7 and SPAC3G6.05) and Fep1p (srx1, sib1, sib2, rds1, isu1, SPBC27B12.03c, SPAC1F8.02c, and SPBC947.05c). We also present evidence refuting a direct role of Cuf1p in the repression of genes involved in iron uptake. Remarkable differences were detected in responses of the two yeasts to excess copper, probably reflecting evolutionary adaptation to different environments. CONCLUSION: The considerable evolutionary distance between budding and fission yeast resulted in substantial diversion in the regulation of copper and iron homeostasis. Despite these differences, the conserved regulation of a core set of genes involved in the uptake of these metals provides valuable clues to key features of metal metabolism.


Subject(s)
Copper/metabolism , GATA Transcription Factors/genetics , Gene Expression Regulation, Fungal , Iron/metabolism , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/genetics , Biological Evolution , GATA Transcription Factors/physiology , Oligonucleotide Array Sequence Analysis , Regulatory Elements, Transcriptional/genetics , Regulatory Elements, Transcriptional/physiology , Saccharomycetales/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/physiology , Species Specificity , Transcription Factors/physiology , Transcription, Genetic
20.
Mol Cell ; 26(1): 145-55, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17434133

ABSTRACT

Gene expression is controlled at multiple layers, and cells may integrate different regulatory steps for coherent production of proper protein levels. We applied various microarray-based approaches to determine key gene-expression intermediates in exponentially growing fission yeast, providing genome-wide data for translational profiles, mRNA steady-state levels, polyadenylation profiles, start-codon sequence context, mRNA half-lives, and RNA polymerase II occupancy. We uncovered widespread and unexpected relationships between distinct aspects of gene expression. Translation and polyadenylation are aligned on a global scale with both the lengths and levels of mRNAs: efficiently translated mRNAs have longer poly(A) tails and are shorter, more stable, and more efficiently transcribed on average. Transcription and translation may be independently but congruently optimized to streamline protein production. These rich data sets, all acquired under a standardized condition, reveal a substantial coordination between regulatory layers and provide a basis for a systems-level understanding of multilayered gene-expression programs.


Subject(s)
Gene Expression Regulation, Fungal , Genome, Fungal , Protein Biosynthesis , RNA, Messenger/genetics , Schizosaccharomyces/genetics , Oligonucleotide Array Sequence Analysis , Polyadenylation , Polyribosomes/metabolism , Protein Array Analysis , RNA Polymerase II/genetics , RNA, Messenger/chemistry , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...