Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766065

ABSTRACT

Biomolecular condensates play pivotal roles in many cellular processes, yet predicting condensate growth dynamics within the complex intracellular environment is challenging. While chromatin mechanics are known to influence condensate coarsening in the nucleus, the effect of condensate properties remains unclear. Our study demonstrates that the interplay between condensate properties and chromatin mechanics dictates condensate growth dynamics. Through chemical dimerization, we induced condensates of various properties in the cell nuclei, revealing distinct growth mechanisms: diffusion-driven or ripening-dominated. To explain experimental observations, we developed a quantitative theory that uncovers the role of chromatin in modulating condensate growth via size-dependent pressure. We find that surface tension is a critical factor in determining whether condensates undergo elastic or Ostwald ripening. Our model predicts that different condensates are affected differently by chromatin heterogeneity, validated by experimentally perturbing chromatin organization. Taken together, our work elucidates how condensate surface tension and chromatin heterogeneity govern nuclear condensate ripening.

2.
Nat Commun ; 15(1): 2165, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461301

ABSTRACT

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.


Subject(s)
Neoplasms , R-Loop Structures , RNA, Long Noncoding , Telomere Homeostasis , Histone Demethylases/genetics , Histone Demethylases/metabolism , Phase Separation , RNA, Long Noncoding/genetics , Telomere/genetics , Telomere/metabolism , Telomere Homeostasis/genetics , Humans
3.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38463993

ABSTRACT

Alternative lengthening of telomeres (ALT) pathway maintains telomeres in a significant fraction of cancers associated with poor clinical outcomes. A better understanding of ALT mechanisms can provide a basis for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins plays a critical role in the formation of ALT telomere-associated PML bodies (APBs), where telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, whether and how SUMO contributes to ALT beyond APB formation remains elusive. Here, we report that SUMO promotes collaboration among DNA repair proteins to achieve APB-independent telomere maintenance. By using ALT cancer cells with PML protein knocked out and thus devoid of APBs, we show that sumoylation is required for manifesting ALT features, including telomere clustering and telomeric DNA synthesis, independent of PML and APBs. Further, small molecule-induced telomere targeting of SUMO produces signatures of phase separation and ALT features in PML null cells in a manner depending on both sumoylation and SUMO interaction with SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are linked to the enrichment of DNA repair proteins, including Rad52, Rad51AP1, and BLM, to the SUMO-containing telomere foci. Finally, we find that Rad52 can undergo phase separation, enrich SUMO on telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that, in addition to forming APBs, SUMO also promotes collaboration among DNA repair proteins to support telomere maintenance in ALT cells. Given the promising effects of sumoylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.

4.
Chembiochem ; 23(16): e202200209, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35599237

ABSTRACT

To mimic the levels of spatiotemporal control that exist in nature, tools for chemically induced dimerization (CID) are employed to manipulate protein-protein interactions. Although linker composition is known to influence speed and efficiency of heterobifunctional compounds, modeling or in vitro experiments are often insufficient to predict optimal linker structure. This can be attributed to the complexity of ternary complex formation and the overlapping factors that impact the effective concentration of probe within the cell, such as efflux and passive permeability. Herein, we synthesize a library of modular chemical tools with varying linker structures and perform quantitative microscopy in live cells to visualize dimerization in real-time. We use our optimized probe to demonstrate our ability to recruit a protein of interest (POI) to the mitochondria, cell membrane, and nucleus. Finally, we induce and monitor local and global phase separation. We highlight the importance of quantitative approaches to linker optimization for dynamic systems and introduce new, synthetically accessible tools for the rapid control of protein localization.


Subject(s)
Protein Transport , Cell Membrane , Dimerization
5.
Methods Enzymol ; 640: 309-326, 2020.
Article in English | MEDLINE | ID: mdl-32560804

ABSTRACT

Small molecule probes are essential tools for biomedical applications, with utility as cellular stains, labels for biomolecules, environmental indicators, and biosensors. However, a fluorophore's characteristics are difficult to predict solely through calculations or rational design, making the development of a core scaffold that is amenable to late stage functionalization particularly desirable. In this chapter, we describe the synthesis and application of a tunable quinoline scaffold that can be readily functionalized and optimized for a variety of imaging applications. We present a facile synthesis that results in three functional domains that influence the compound's photophysical properties, structural diversity, and polarization. We demonstrate a method with which to study the scaffold's tunable photophysical properties as a result of its structure and environment, and finally exhibit its utility in pH sensitive, live-cell imaging.


Subject(s)
Biosensing Techniques , Quinolines , Fluorescent Dyes
6.
Methods Enzymol ; 639: 379-388, 2020.
Article in English | MEDLINE | ID: mdl-32475411

ABSTRACT

Within the past two decades, photoconvertible fluorescent proteins (PC-FPs) have emerged as a class of useful proteins for the visualization and tracking of individual cells, complex cellular mechanisms, protein-protein interactions, and other dynamic processes. Despite the utility of these proteins, they are inherently limited by a number of factors including large size and inflexibility of tag location within a protein of interest. The following chapter describes the discovery and use of a small molecule photoconvertible dye based on the novel diazaxanthilidene scaffold. The diazaxanthilidene dye presented in this chapter is shown to be an effective alternative to well-known PC-FPs for spatiotemporally controlled cell labeling experiments.


Subject(s)
Coloring Agents , Proteins , Fluorescent Dyes , Luminescent Proteins
7.
Methods Enzymol ; 624: 25-45, 2019.
Article in English | MEDLINE | ID: mdl-31370933

ABSTRACT

Protein-protein interactions are highly dynamic biological processes that regulate various cellular reactions. They exhibit high specificity and spatiotemporal control in order to efficiently utilize finite resources in a cellular compartment. Photoactivatable chemically inducible dimerization (pCID) has emerged as an attractive technique in the scientific community, leading to the development of systems that can be activated with various wavelengths of light in order to manipulate processes on biologically relevant scales with molecular specificity. These systems can be modified to control various protein functions with unprecedented precision and spatiotemporal resolution. In this chapter, we describe an optogenetic platform that provides reversible control over dimerization of genetically tagged proteins using orthogonal wavelengths of light. We demonstrate photoactivation and photo-reversal of protein localization and transport. Mitosis is manipulated by activating and silencing the spindle assembly checkpoint through recruitment and release of proteins from kinetochores.


Subject(s)
Optogenetics/methods , Proteins/genetics , HeLa Cells , Humans , Mitosis , Photochemical Processes , Protein Multimerization , Protein Transport , Proteins/analysis , Proteins/metabolism , Transcriptional Activation
8.
J Org Chem ; 83(8): 4491-4504, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29547285

ABSTRACT

Phosphothreonine (pThr)-embedded peptide catalysts are found to mediate the reductive amination of 3-amidocyclohexanones with divergent selectivity. The choice of peptide sequence can be used to alter the diastereoselectivity to favor either the cis-product or trans-product, which are obtained in up to 93:7 er. NMR studies and DFT calculations are reported and indicate that both pathways rely on secondary interactions between substrate and catalyst to achieve selectivity. Furthermore, catalysts appear to accomplish a parallel kinetic resolution of the substrates. The facility for phosphopeptides to tune reactivity and access multiple products in reductive aminations may translate to the diversification of complex substrates, such as natural products, at numerous reactive sites.


Subject(s)
Biological Products/chemical synthesis , Cyclohexanones/chemistry , Phosphothreonine/chemistry , Amination , Biological Products/chemistry , Catalysis , Kinetics , Molecular Structure , Oxidation-Reduction , Quantum Theory , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...