Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroendocrinol ; 31(10): e12781, 2019 10.
Article in English | MEDLINE | ID: mdl-31419363

ABSTRACT

Prolactin (PRL) is a pleiotropic hormone that was identified in the context of maternal care and its release from the anterior pituitary is primarily controlled by neuroendocrine dopaminergic (NEDA) neurones of the arcuate nucleus of the hypothalamus. The sexually dimorphic nature of PRL physiology and associated behaviours is evident in mammals, even though the number and density of NEDA neurones is reported as not being sexually dimorphic in rats. However, the underlying circuits controlling NEDA neuronal activity and subsequent PRL release are largely uncharacterised. Thus, we mapped whole-brain monosynaptic NEDA inputs in male and female mice. Accordingly, we employed a rabies virus based monosynaptic tracing system capable of retrogradely mapping inputs into genetically defined neuronal populations. To gain genetic access to NEDA neurones, we used the dopamine transporter promoter. Here, we unravel 59 brain regions that synapse onto NEDA neurones and reveal that male and female mice, despite monomorphic distribution of NEDA neurones in the arcuate nucleus of the hypothalamus, receive sexually dimorphic amount of inputs from the anterior hypothalamic nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular hypothalamic nucleus, posterior periventricular nucleus, supraoptic nucleus, suprachiasmatic nucleus, lateral supramammillary nucleus, tuberal nucleus and periaqueductal grey. Beyond highlighting the importance of considering sex as a biological variable when evaluating connectivity in the brain, these results illustrate a case where a neuronal population with similar anatomical distribution has a subjacent sexually dimorphic connectivity pattern, potentially capable of contributing to the sexually dimorphic nature of PRL release and function.


Subject(s)
Dopaminergic Neurons/physiology , Neural Pathways/physiology , Prolactin/physiology , Sex Characteristics , Animals , Arcuate Nucleus of Hypothalamus/anatomy & histology , Brain/anatomy & histology , Dependovirus , Dopamine Plasma Membrane Transport Proteins/genetics , Female , Genetic Vectors , Male , Mice , Mice, Transgenic , Neuroanatomical Tract-Tracing Techniques , Rabies virus
SELECTION OF CITATIONS
SEARCH DETAIL
...