Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Commun Biol ; 6(1): 269, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36918710

ABSTRACT

Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.


Subject(s)
Anti-Infective Agents , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Humans , Animals , Mice, Obese , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Obesity/genetics , Insulin/pharmacology , Homeostasis , Anti-Infective Agents/pharmacology
2.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681731

ABSTRACT

Acute liver injury (ALI) is a severe disorder resulting from excessive hepatocyte cell death, and frequently caused by acetaminophen intoxication. Clinical management of ALI progression is hampered by the dearth of blood biomarkers available. In this study, a bioinformatics workflow was developed to screen omics databases and identify potential biomarkers for hepatocyte cell death. Then, discovery proteomics was harnessed to select from among these candidates those that were specifically detected in the blood of acetaminophen-induced ALI patients. Among these candidates, the isoenzyme alcohol dehydrogenase 1B (ADH1B) was massively leaked into the blood. To evaluate ADH1B, we developed a targeted proteomics assay and quantified ADH1B in serum samples collected at different times from 17 patients admitted for acetaminophen-induced ALI. Serum ADH1B concentrations increased markedly during the acute phase of the disease, and dropped to undetectable levels during recovery. In contrast to alanine aminotransferase activity, the rapid drop in circulating ADH1B concentrations was followed by an improvement in the international normalized ratio (INR) within 10-48 h, and was associated with favorable outcomes. In conclusion, the combination of omics data exploration and proteomics revealed ADH1B as a new blood biomarker candidate that could be useful for the monitoring of acetaminophen-induced ALI.


Subject(s)
Alcohol Dehydrogenase/blood , Biomarkers/blood , Chemical and Drug Induced Liver Injury/metabolism , Proteomics/methods , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/pathology , Chromatography, High Pressure Liquid , Computational Biology , Humans , International Normalized Ratio , Limit of Detection , Tandem Mass Spectrometry
3.
Gastroenterology ; 154(4): 1009-1023.e14, 2018 03.
Article in English | MEDLINE | ID: mdl-29133078

ABSTRACT

BACKGROUND & AIMS: Paneth cell dysfunction causes deficiencies in intestinal C-type lectins and antimicrobial peptides, which leads to dysbiosis of the intestinal microbiota, alters the mucosal barrier, and promotes development of inflammatory bowel diseases. We investigated whether transgenic (TG) expression of the human regenerating family member 3 alpha gene (REG3A) alters the fecal microbiota and affects development of colitis in mice. METHODS: We performed studies with C57BL/6 mice that express human regenerating family member 3 alpha (hREG3A) in hepatocytes, via the albumin gene promoter. In these mice, hREG3A travels via the bile to the intestinal lumen. Some mice were given dextran sodium sulfate (DSS) to induce colitis. Feces were collected from mice and the composition of the microbiota was analyzed by 16S ribosomal RNA sequencing. The fecal microbiome was also analyzed from mice that express only 1 copy of human REG3A transgene but were fed feces from control mice (not expressing hREG3A) as newborns. Mice expressing hREG3A were monitored for DSS-induced colitis after cohousing or feeding feces from control mice. Colitis was induced in another set of control and hREG3A-TG mice by administration of trinitrobenzene sulfonic acid; some mice were given intrarectal injections of the hREG3A protein. Colon tissues were collected from mice and analyzed by histology and immunohistochemistry to detect mucin 2, as well as by 16S ribosomal RNA fluorescence in situ hybridization, transcriptional analyses, and quantitative polymerase chain reaction. We measured levels of reactive oxygen species (ROS) in bacterial cultures and fecal microbiota using 2',7'-dichlorofluorescein diacetate and flow cytometry. RESULTS: The fecal microbiota of mice that express hREG3A had a significant shift in composition, compared with control mice, with enrichment of Clostridiales (Ruminococcaceae, Lachnospiraceae) and depletion of Bacteroidetes (Prevotellaceae); the TG mice developed less-severe colitis following administration of DSS than control mice, associated with preserved gut barrier integrity and reduced bacterial translocation, epithelial inflammation, and oxidative damage. A similar shift in the composition of the fecal microbiota occurred after a few months in TG mice heterozygous for REG3A that harbored a wild-type maternal microbiota at birth; these mice developed less-severe forms of colitis following DSS administration. Cohoused and germ-free mice fed feces from REG3A-TG mice and given DSS developed less-severe forms of colitis and had reduced lipopolysaccharide activation of the toll-like receptor 4 and increased survival times compared with mice not fed feces from REG3A-TG mice. REG3A TG mice developed only mild colonic inflammation after exposure to 2,4,6-trinitrobenzene sulfonic acid, compared with control mice. Control mice given intrarectal hREG3A and exposed to 2,4,6-trinitrobenzene sulfonic acid showed less colon damage and inflammation than mice not given intrarectal hREG3A. Fecal samples from REG3A-TG mice had lower levels of ROS than feces from control mice during DSS administration. Addition of hREG3A to bacterial cultures reduced levels of ROS and increased survival of oxygen-sensitive commensal bacteria (Faecalibacterium prausnitzii and Roseburia intestinalis). CONCLUSIONS: Mice with hepatocytes that express hREG3A, which travels to the intestinal lumen, are less sensitive to colitis than control mice. We found hREG3A to alter the colonic microbiota by decreasing levels of ROS. Fecal microbiota from REG3A-TG mice protect non-TG mice from induction of colitis. These findings indicate a role for reduction of oxidative stress in preserving the gut microbiota and its ability to prevent inflammation.


Subject(s)
Bacteria/metabolism , Colitis/prevention & control , Colon/metabolism , Gastrointestinal Microbiome , Hepatocytes/metabolism , Pancreatitis-Associated Proteins/metabolism , Animals , Bacteria/classification , Bacteria/growth & development , Colitis/chemically induced , Colitis/metabolism , Colitis/microbiology , Colon/microbiology , Dextran Sulfate , Disease Models, Animal , Fecal Microbiota Transplantation , Humans , Mice, Inbred C57BL , Mice, Transgenic , Microbial Viability , Oxidative Stress/drug effects , Pancreatitis-Associated Proteins/genetics , Reactive Oxygen Species/metabolism , Time Factors , Trinitrobenzenesulfonic Acid
4.
Talanta ; 170: 473-480, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28501198

ABSTRACT

A major class of clinical biomarkers is constituted of intracellular proteins which are leaking into the blood following ischemia, exposure to toxic xenobiotics or mechanical aggression. Their ectopic presence in plasma/serum is an indicator of tissue damage and raises a warning signal. These proteins, referred to as cytolysis biomarkers, are generally of cytoplasmic origin and as such, are devoid of glycosylation. In contrast, most plasma/serum proteins originate from the hepatic secretory pathway and are heavily glycosylated (at the exception of albumin). Recent advances in targeted proteomics have supported the parallelized evaluation of new blood biomarkers. However, these analytical methods must be combined with prefractionation strategies that reduce the complexity of plasma/serum matrix. In this article, we present the glycodepletion method, which reverses the hydrazide-based glycocapture concept to remove plasma/serum glycoproteins from plasma/serum matrix and facilitates the detection of cytolysis biomarkers. Glycodepletion was integrated to a targeted proteomics pipeline to evaluate 4 liver cytolysis biomarker candidates in the context of acetaminophen-induced acute hepatitis.


Subject(s)
Blood Proteins/isolation & purification , Glycoproteins/isolation & purification , Proteins/analysis , Proteomics/methods , Amino Acid Sequence , Biomarkers/analysis , Biomarkers/blood , Chemical Fractionation/methods , Chromatography, Liquid/methods , Glycoproteins/blood , Glycosylation , Hepatitis/blood , Humans , Tandem Mass Spectrometry/methods
5.
Gastroenterology ; 146(2): 401-11.e1, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24512910

ABSTRACT

BACKGROUND & AIMS: Patients with colorectal tumors with microsatellite instability (MSI) have better prognoses than patients with tumors without MSI, but have a poor response to 5-fluorouracil­based chemotherapy. A dominant-negative form of heat shock protein (HSP)110 (HSP110DE9) expressed by cancer cells with MSI, via exon skipping caused by somatic deletions in the T(17) intron repeat, sensitizes the cells to 5-fluorouracil and oxaliplatin.We investigated whether HSP110 T(17) could be used to identify patients with colorectal cancer who would benefit from adjuvant chemotherapy with 5-fluorouracil and oxaliplatin. METHODS: We characterized the interaction between HSP110 and HSP110DE9 using surface plasmon resonance. By using polymerase chain reaction and fragment analysis, we examined how the size of somatic allelic deletions in HSP110 T(17) affected the HSP110 protein expressed by tumor cells. We screened 329 consecutive patients with stage II­III colorectal tumors with MSI who underwent surgical resection at tertiary medical centers for HSP110 T(17). RESULTS: HSP110 and HSP110DE9 interacted in a1:1 ratio. Tumor cells with large deletions in T(17) had increased ratios of HSP110DE9:HSP110, owing to the loss of expression of full-length HSP110. Deletions in HSP110 T(17) were mostly biallelic in primary tumor samples with MSI. Patients with stage II­III cancer who received chemotherapy and had large HSP110 T(17) deletions (≥5 bp; 18 of 77 patients, 23.4%) had longer times of relapse-free survival than patients with small or no deletions (≤4 bp; 59 of 77 patients, 76.6%) in multivariate analysis (hazard ratio, 0.16; 95% confidence interval, 0.012­0.8; P = .03). We found a significant interaction between chemotherapy and T17 deletion (P =.009). CONCLUSIONS: About 25% of patients with stages II­III colorectal tumors with MSI have an excellent response to chemotherapy, due to large, biallelic deletions in the T(17) intron repeat of HSP110 in tumor DNA.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Base Sequence , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , HSP110 Heat-Shock Proteins/genetics , Microsatellite Instability , Sequence Deletion , Aged , Antineoplastic Agents/administration & dosage , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Line, Tumor , Chemotherapy, Adjuvant , Colectomy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/surgery , Female , Fluorouracil/administration & dosage , Follow-Up Studies , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , Humans , Introns , Leucovorin/administration & dosage , Male , Models, Molecular , Organoplatinum Compounds/administration & dosage , Oxaliplatin , Retrospective Studies , Surface Plasmon Resonance , Survival Analysis , Treatment Outcome
6.
Cancer Res ; 72(21): 5505-15, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22962269

ABSTRACT

A number of solute carrier (SLC) proteins are subject to changes in expression and activity during carcinogenesis. Whether these changes play a role in carcinogenesis is unclear, except for some nutrients and ion carriers whose deregulation ensures the necessary reprogramming of energy metabolism in cancer cells. In this study, we investigated the functional role in tumor progression of the sodium/iodide symporter (NIS; aka SLC5A5), which is upregulated and mislocalized in many human carcinomas. Notably, we found that NIS enhanced cell migration and invasion without ion transport being involved. These functions were mediated by NIS binding to leukemia-associated RhoA guanine exchange factor, a Rho guanine exchange factor that activates the small GTPase RhoA. Sequestering NIS in intracellular organelles or impairing its targeting to the cell surface (as observed in many cancers) led to a further increase in cell motility and invasiveness. In sum, our results established NIS as a carrier protein that interacts with a major cell signaling hub to facilitate tumor cell locomotion and invasion.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Neoplasm Invasiveness/pathology , Signal Transduction/physiology , Symporters/metabolism , Cell Line, Tumor , Cell Movement/physiology , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunoprecipitation , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Rho Guanine Nucleotide Exchange Factors , Transduction, Genetic , Two-Hybrid System Techniques
7.
Rev Prat ; 52(2): 145-8, 2002 Jan 15.
Article in French | MEDLINE | ID: mdl-11915557

ABSTRACT

Cancer and hemopathy account from 4.5% to 14% of causes of intermittent fever (IF). The tumoral etiology is loss frequent in IF than continues fever. The man physiopathologic mechanism is represented by secretion of cytokines from tumour cells. IF may be the presenting symptom of cancer. This case diagnosis is usually made by cautions clinical evaluation and imaging. When cancer is known, IF can be related to infectious diseases or neoplastic evolution.


Subject(s)
Fever/etiology , Neoplasms/complications , Cytokines/pharmacology , Diagnosis, Differential , Fever/physiopathology , Humans , Infections/complications , Periodicity
SELECTION OF CITATIONS
SEARCH DETAIL
...