Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Mar Environ Res ; 198: 106531, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38696933

ABSTRACT

In a 10-month experimental study, we assessed the combined impact of warming and acidification on critical life stages of small-spotted catshark (Scyliorhinus canicula). Using recently developed frameworks, we disentangled individual and group responses to two climate scenarios projected for 2100 (SSP2-4.5: Middle of the road and SSP5-8.5: Fossil-fueled Development). Seasonal temperature fluctuations revealed the acute vulnerability of embryos to summer temperatures, with hatching success ranging from 82% for the control and SSP2-4.5 treatments to only 11% for the SSP5-8.5 treatment. The death of embryos was preceded by distinct individual growth trajectories between the treatments, and also revealed inter-individual variations within treatments. Embryos with the lowest hatching success had lower yolk consumption rates, and growth rates associated with a lower energy assimilation, and almost all of them failed to transition to internal gills. Within 6 months after hatching, no additional mortality was observed due to cooler temperatures.

2.
J Environ Radioact ; 268-269: 107265, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37562207

ABSTRACT

Among natural radionuclides, 210Po is the major contributor to the radiation dose received by marine organisms. In cephalopods, 210Po is concentrated in the digestive gland, which contains over 90% of the whole-body burden of the nuclide. Although previous studies showed that 210Po was taken up independently of 210Pb, its parent nuclide, very little is known about the factors influencing its levels in cephalopods. To the best of our knowledge, no studies investigated 210Po levels in different species at the same time. In the present study, 210Po was analysed in the digestive gland of 62 individuals from 11 species representing a large range of feeding ecologies and habitats, including squids, cuttlefish and octopus species from coastal to deep-oceanic habitats. Among species, the highest activity was measured in Loligo vulgaris (5720 ± 3606 Bq/kg) and the lowest in T. megalops (188 Bq/kg). However, considering the habitats (benthic vs pelagic and neritic vs oceanic), no significant differences appeared. At the species level, no differences between sexes were found so both sexes were plotted together to test the size effect for species with at least 8 individuals (i.e., Eledone cirrhosa, L. vulgaris, L. forbesi and Sepia officinalis). In the first three species, 210Po levels decreased significantly with increasing size or weight but not in S. officinalis. In squid, this could be related to ontogenetic changes in diet from a high proportion of crustaceans (high Po content) in small individuals to fish (low Po content) in larger individuals, while the high dietary plasticity of S. officinalis at all stages of its life cycle could explain the lack of decrease in 210Po with size. In comparison to the few data from the literature, the levels of 210Po concentrations in the cephalopod community of the Bay of Biscay were overall in the same range than those reported in other cephalopods, varying across 4 orders of magnitude. Further studies are needed to understand the mechanism of retention in the cephalopod digestive gland.


Subject(s)
Cephalopoda , Polonium , Radiation Monitoring , Animals , Male , Female , Polonium/analysis , Bays
3.
Environ Sci Technol ; 57(14): 5761-5770, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36976251

ABSTRACT

This work quantified the accumulation efficiencies of Hg in cuttlefish, depending on both organic (MeHg) and inorganic (Hg(II)) forms, under increased pCO2 (1600 µatm). Cuttlefish were fed with live shrimps injected with two Hg stable isotopic tracers (Me202Hg and 199Hg(II)), which allowed for the simultaneous quantification of internal Hg accumulation, Hg(II) methylation, and MeHg demethylation rates in different organs. Results showed that pCO2 had no impact on Hg bioaccumulation and organotropism, and both Hg and pCO2 did not influence the microbiota diversity of gut and digestive gland. However, the results also demonstrated that the digestive gland is a key organ for in vivo MeHg demethylation. Consequently, cuttlefish exposed to environmental levels of MeHg could exhibit in vivo MeHg demethylation. We hypothesize that in vivo MeHg demethylation could be due to biologically induced reactions or to abiotic reactions. This has important implications as to how some marine organisms may respond to future ocean change and global mercury contamination.


Subject(s)
Cephalopoda , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Mercury/analysis , Methylmercury Compounds/metabolism , Methylation , Cephalopoda/metabolism , Aquatic Organisms/metabolism , Water Pollutants, Chemical/analysis
4.
Front Physiol ; 14: 1162709, 2023.
Article in English | MEDLINE | ID: mdl-36969601

ABSTRACT

Lately, behavioral ecotoxicology has flourished because of increasing standardization of analyses of endpoints like movement. However, research tends to focus on a few model species, which limits possibilities of extrapolating and predicting toxicological effects and adverse outcomes at the population and ecosystem level. In this regard, it is recommended to assess critical species-specific behavioral responses in taxa playing key roles in trophic food webs, such as cephalopods. These latter, known as masters of camouflage, display rapid physiological color changes to conceal themselves and adapt to their surrounding environments. The efficiency of this process depends on visual abilities and acuity, information processing, and control of chromatophores dynamics through nervous and hormonal regulation with which many contaminants can interfere. Therefore, the quantitative measurement of color change in cephalopod species could be developed as a powerful endpoint for toxicological risk assessment. Based on a wide body of research having assessed the effect of various environmental stressors (pharmaceutical residues, metals, carbon dioxide, anti-fouling agents) on the camouflage abilities of juvenile common cuttlefish, we discuss the relevance of this species as a toxicological model and address the challenge of color change quantification and standardization through a comparative review of the available measurement techniques.

5.
Environ Int ; 171: 107673, 2023 01.
Article in English | MEDLINE | ID: mdl-36580734

ABSTRACT

Information on the relationship between the exposure concentrations of metals and their biodistribution among organs remained scarce in invertebrates. The objective of this study was to investigate the effects of Cd concentration on the organotropism, toxico-kinetic and fate of this metal in different organs of gammarids exposed to dissolved radioisotope 109Cd. Gammarids male were exposed for 7 days to three environmental Cd concentrations (i.e. 4, 52 and 350 ng.L-1) before being placed in depuration conditions (i.e. uncontaminated water). At several sampling times, Cd concentrations were determined by 109Cd γ-counting in water, caeca, cephalon, gills, intestine and remaining tissues. Bioconcentration Factors (BCF) and Cd relative proportions in organs were calculated to assess the exposure concentration effect on the bioaccumulation capacities. The dependance of the organ-specific kinetic parameters to Cd water concentrations were estimated by fitting nested one-compartment toxico-kinetic (TK) models to both the accumulation and depuration data, by Bayesian inference. Then, for each Cd concentrations, the metal exchanges among organs over time were formalized by a multi-compartments TK model fitted to all organ data simultaneously. Our results highlighted that, at the end of the exposure phase, BCF and Cd relative proportions, in each organ, were not significantly modulated by water concentrations. Kinetically, Cd accumulation rates in all organs (except intestines) were depended on the exposure concentration, but not the elimination rates. The in vivo management of Cd (i.e. metal exchanges among organs) remained qualitatively unchanged according to exposure concentration. All these results also highlighted key role of that organs in the management of Cd: bioconcentration by caeca, storage by gills and main entry pathway by intestine. This study shows the interest of implementing TK approaches to test the effect of environmental factors on bioaccumulation, inter-organ exchanges and fate of contaminants in invertebrate body to enhance the understanding of the toxicity risk.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Male , Cadmium/analysis , Toxicokinetics , Bayes Theorem , Tissue Distribution , Metals/metabolism , Amphipoda/metabolism , Water , Water Pollutants, Chemical/analysis
6.
Environ Res ; 215(Pt 1): 114201, 2022 12.
Article in English | MEDLINE | ID: mdl-36057331

ABSTRACT

The bioaccumulation of mercury (Hg) in marine organisms through various pathways has not yet been fully explored, particularly in cephalopods. This study utilises radiotracer techniques using the isotope 203Hg to investigate the toxicokinetics and the organotropism of waterborne inorganic Hg (iHg) and dietary inorganic and organic Hg (methylHg, MeHg) in juvenile common cuttlefish Sepia officinalis. The effect of two contrasting CO2 partial pressures in seawater (400 and 1600 µatm, equivalent to pH 8.08 and 7.54, respectively) and two types of prey (fish and shrimp) were tested as potential driving factors of Hg bioaccumulation. After 14 days of waterborne exposure, juvenile cuttlefish showed a stable concentration factor of 709 ± 54 and 893 ± 117 at pH 8.08 and 7.54, respectively. The accumulated dissolved i203Hg was depurated relatively rapidly with a radiotracer biological half-life (Tb1/2) of 44 ± 12 and 55 ± 16 days at pH 8.08 and 7.54, respectively. During the whole exposure period, approximately half of the i203Hg was found in the gills, but i203Hg also increased in the digestive gland. When fed with 203Hg-radiolabelled prey, cuttlefish assimilated almost all the Hg provided (>95%) independently of the prey type. Nevertheless, the prey type played a major role on the depuration kinetics with Hg Tb1/2 approaching infinity in fish fed cuttlefish vs. 25 days in shrimp fed cuttlefish. Such a difference is explained by the different proportion of Hg species in the prey, with fish prey containing more than 80% of MeHg vs. only 30% in shrimp. Four days after ingestion of radiolabelled food, iHg was primarily found in the digestive organs while MeHg was transferred towards the muscular tissues. No significant effect of pH/pCO2 variation was observed during both the waterborne and dietary exposures on the bioaccumulation kinetics and tissue distribution of i203Hg and Me203Hg. Dietary exposure is the predominant pathway of Hg bioaccumulation in juvenile cuttlefish.


Subject(s)
Mercury , Methylmercury Compounds , Sepia , Water Pollutants, Chemical , Animals , Bioaccumulation , Carbon Dioxide , Decapodiformes/metabolism , Fishes/metabolism , Food Chain , Hydrogen-Ion Concentration , Mercury/analysis , Methylmercury Compounds/analysis , Oceans and Seas , Seawater , Sepia/chemistry , Sepia/metabolism , Water Pollutants, Chemical/analysis
7.
Environ Pollut ; 308: 119625, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35714792

ABSTRACT

One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to 109Cd- or 65Zn-radiolabeled water at a concentration of 52.1 and 416 ng.L-1 (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and 109Cd or 65Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7th day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Bayes Theorem , Cadmium/analysis , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zinc/analysis
8.
Environ Pollut ; 292(Pt B): 118388, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34699922

ABSTRACT

Seafood is well recognized as a major source of Long Chain n-3 Polyunsaturated Fatty Acids (LC n-3 PUFA, especially ecosapentaenoic acid, i.e. EPA and docosaheaxaenoic acid, i.e. DHA) and essential trace elements (As, Cu, Fe, Mn, Se, and Zn). It is also a source of non-essential trace elements (Ag, Cd, Hg, Pb) that can be deleterious for health even at low concentrations. Edible parts of sixteen species (fish, cephalopods, crustaceans and bivalves) of great importance in the Pertuis Charentais region, one of the main shellfish farming and fishing areas along the french coastline, were sampled in winter and analyzed to determine their fatty acid (FA) composition and trace element concentrations. Based on these analyses, a suite of indices was calculated to estimate risk and benefit of seafood consumption: the n-6/n-3 ratio, the atherogenic index, the thrombogenic index, the EPA + DHA daily recommended portion, as well as the maximum safe consumption. The results showed that fish contributed the most to LC n-3 PUFA supply, while bivalves and crustaceans were more beneficial in essential trace elements. Whatever the species, the concentrations of non-essential elements were not limiting for seafood consumption, as important amounts of the analyzed species can be eaten daily or weekly before becoming hazardous to consumers. Yet, concentrations of Hg in dogfish and seabass can become a concern for frequent seafood consumers (>three meals a week), confirming that varying seafood items is a key point for consumers to optimize the benefits of diverse seafood resources. Considering FA composition, whiting and pilchard are the most beneficial fish species for human diet, while surmullet was the least beneficial one. However, using an index integrating the relative risk due to Hg content, the surmullet appears as one of the most beneficial. This study provides a temporal shot of the quality of marine resources consumed in winter period in the studied area and highlights the complexity of a quantitative risk and benefit assessment with respect to the biochemical attributes of selected seafood.


Subject(s)
Mercury , Trace Elements , Animals , Fishes , Food Contamination/analysis , Humans , Risk Assessment , Seafood/analysis , Shellfish , Trace Elements/analysis
9.
R Soc Open Sci ; 8(9): 210345, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34540247

ABSTRACT

Stable isotope compositions of carbon and nitrogen (expressed as δ 13C and δ 15N) from the European common cuttlefish (Sepia officinalis) were measured in order to evaluate the utility of using these natural tracers throughout the Northeast Atlantic Ocean and Mediterranean Sea (NEAO-MS). Mantle tissue was obtained from S. officinalis collected from 11 sampling locations spanning a wide geographical coverage in the NEAO-MS. Significant differences of both δ 13C and δ 15N values were found among S. officinalis samples relative to sampling location. δ 13C values did not show any discernable spatial trends; however, a distinct pattern of lower δ 15N values in the Mediterranean Sea relative to the NEAO existed. Mean δ 15N values of S. officinalis in the Mediterranean Sea averaged 2.5‰ lower than conspecifics collected in the NEAO and showed a decreasing eastward trend within the Mediterranean Sea with the lowest values in the most eastern sampling locations. Results suggest δ 15N may serve as a useful natural tracer for studies on the population structure of S. officinalis as well as other marine organisms throughout the NEAO-MS.

10.
R Soc Open Sci ; 8(6): 202093, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34109036

ABSTRACT

Mechanisms underlying biological diversities at different scales have received significant attention over the last decades. The hypothesis of whether local abiotic factors, driving functional and phylogenetic diversities, can differ among taxa of arthropods remains under-investigated. In this study, we compared correlations and drivers of functional diversity (FD) and phylogenetic diversity (PD) between spiders and carabids, two dominant taxa of ground-dwelling arthropods in salt marshes. Both taxa exhibited high correlation between FD and PD; the correlation was even higher in carabids, probably owing to their lower species richness. Analyses using structural equation modelling highlighted that FD and PD were positively linked to taxonomic diversity (TD) in both taxa; however, abiotic factors driving the FD and PD differed between spiders and carabids. Salinity particularly drove the TD of carabids, but not that of spiders, suggesting that spiders are phenotypically more plastic and less selected by this factor. Conversely, PD was influenced by salinity in spiders, but not in carabids. This result can be attributed to the different evolutionary history and colonization process of salt marshes between the two model taxa. Finally, our study highlights that, in taxa occupying the same niche in a constrained habitat, FD and PD can have different drivers, and thereby different filtering mechanisms.

11.
Environ Int ; 156: 106625, 2021 11.
Article in English | MEDLINE | ID: mdl-34010754

ABSTRACT

The use of freshwater invertebrates for biomonitoring has been increasing for several decades, but little is known about relations between external exposure concentration of metals and their biodistribution among different tissues. One and multi-compartments toxicokinetic (TK) models are powerful tools to formalize and predict how a contaminant is bioaccumulated. The aim of this study is to develop modeling approaches to improve knowledge on dynamic of accumulation and fate of Cd and Hg in gammarid's organs. Gammarids were exposed to dissolved metals (11.1 ± 1.2 µg.L-1 of Cd or 0.27 ± 0.13 µg.L-1 of Hg) before a depuration phase. At each sampling days, their organs (caeca, cephalon, intestine and remaining tissues) were separated by dissection before analyses. Results allowed us to determine that i) G.fossarum takes up Cd as efficiently as the mussel M.galloprovincialis, but eliminates it more rapidly, ii) organs which accumulate and depurate the most, in terms of concentrations, are caeca and intestine for both metals; iii) the one-compartment TK models is the most relevant for Hg, while the multi-compartments TK model allows a better fit to Cd data, demonstrating dynamic transfer of Cd among organs.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Fresh Water , Metals/toxicity , Tissue Distribution , Water Pollutants, Chemical/toxicity
12.
Sci Total Environ ; 759: 143907, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33333333

ABSTRACT

Mercury (Hg), one of the elements most toxic to biota, accumulates within organisms throughout their lifespan and biomagnifies along trophic chain. Due to their key role in marine systems, cephalopods constitute a major vector of Hg in predators. Further, they grow rapidly and display complex behaviours, which can be altered by neurotoxic Hg. This study investigated Hg concentrations within 81 cephalopod specimens sampled in the Bay of Biscay, which belonged to five species: Eledone cirrhosa, Sepia officinalis, Loligo vulgaris, Todaropsis eblanae and Illex coindetii. Hg concentrations were measured in the digestive gland, the mantle muscle and the optic lobes of the brain. The digestive gland and the mantle were tissues with the most concentrated Hg among all species considered (up to 1.50 µg.g-1 dw), except E. cirrhosa. This benthic cephalopod had 1.3-fold higher Hg concentrations in the brain (up to 1.89 µg.g-1 dw) than in the mantle, while other species had 2-fold lower concentrations of Hg in the brain than in the mantle. Brain-Hg concentrations can be predicted from muscle-Hg concentrations for a given species, which facilitates the assessment of Hg toxicokinetics in cephalopods. In the most contaminated E. cirrhosa individual, the chemical form of Hg in its digestive gland, mantle muscle and optic lobes, was determined using High energy-Resolution X-ray Absorption Near Edge Structure (HR XANES) spectroscopy. In the digestive gland, 33 ± 11% of total Hg was inorganic Hg speciated as a dicysteinate complex (Hg(Cys)2), which suggested that the demethylation of dietary MeHg occurs in this organ. All Hg found in the mantle muscle and the optic lobes is methylated and bound to one cysteinyl group (MeHgCys complex), which implies that dietary MeHg is distributed to these tissues via the bloodstream. These results raised the questions regarding interspecific differences observed regarding Hg brain concentrations and the possible effect of Hg on cephalopod functional brain plasticity and behaviour.


Subject(s)
Mercury , Methylmercury Compounds , Octopodiformes , Water Pollutants, Chemical , Animals , Environmental Monitoring , Mercury/analysis , Nervous System/chemistry , Water Pollutants, Chemical/analysis
13.
J Exp Biol ; 222(Pt 8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30630962

ABSTRACT

Highly unsaturated fatty acids of the omega-3 series (HUFA) are major constituents of cell membranes, yet are poorly synthesised de novo by consumers. Their production, mainly supported by aquatic microalgae, has been decreasing with global change. The consequences of such reductions may be profound for ectotherm consumers, as temperature tightly regulates the HUFA content in cell membranes, maintaining their functionality. Integrating individual, tissue and molecular approaches, we examined the consequences of the combined effects of temperature and HUFA depletion on the key cardio-respiratory functions of the golden grey mullet, an ectotherm grazer of high ecological importance. For 4 months, fish were exposed to two contrasting HUFA diets [4.8% eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA) on dry matter (DM) versus 0.2% EPA+DHA on DM] at 12 and 20°C. Ventricular force development coupled with gene expression profiles measured on cardiac muscle suggest that combining HUFA depletion with warmer temperatures leads to: (1) a proliferation of sarcolemmal and sarcoplasmic reticulum Ca2+ channels and (2) a higher force-generating ability by increasing extracellular Ca2+ influx via sarcolemmal channels when the heart has to sustain excessive effort due to stress and/or exercise. At the individual scale, these responses were associated with a greater aerobic scope, maximum metabolic rate and net cost of locomotion, suggesting the higher energy cost of this strategy. This impaired cardiac performance could have wider consequences for other physiological performance such as growth, reproduction or migration, all of which greatly depend on heart function.


Subject(s)
Fatty Acids, Omega-3/deficiency , Gene Expression/physiology , Heart/physiology , Hot Temperature/adverse effects , Nutritive Value , Oxygen Consumption , Smegmamorpha/physiology , Animals , Climate Change , Global Warming , Oceans and Seas , Seawater/chemistry , Smegmamorpha/genetics
14.
J Environ Radioact ; 192: 426-433, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30059868

ABSTRACT

Considered as the most vulnerable ontogenic stages to environmental stressors, the early-life stages of fish paid a peculiar attention with respect to their vulnerability to metal and radionuclides contamination. Concomitantly, the increasing anthropogenic CO2 release in the atmosphere will cause major change of the seawater chemistry that could affect the trace elements and radionuclides bioconcentration efficiencies by marine organisms. The aim of this work was to 1) delineate the uptake behaviours of Ag, Am, Cd, Co and Zn in seabream eggs during 65 h of development and retention by newly hatched and 7 h-old larvae maintained in clean seawater, respectively, and 2) investigate the effects of elevated pCO2 on the bioconcentration efficiencies of these elements in eggs. Besides differing in terms of maximal concentration factors values, the uptake kinetics showed element-specific patterns with Am being linearly bioconcentrated and Co and Zn showing a saturation state equilibrium. The 110mAg and 109Cd uptake kinetics shared a two-phases pattern being best described by a saturation equation during the first 24 h of development, and then an exponential loss of accumulated elements although the radiotracer concentrations in the surrounding water remained constant. At hatching time, the radioactivity of 110mAg was the highest among radiotracers detected in the larvae. After 7 h in depuration conditions, 60% of this metal was still detected whereas 241Am, 60Co and 65Zn were almost totally lost, suggesting an efficient incorporation of Ag in the embryo during the egg development. Finally, this study brought first qualitative data on the effect of pCO2/pH on metal bioconcentration in eggs, raising the need to unravel chemical and biological processes to predict a potential shift of the toxicity of environmental contamination of fish early life stages with future ocean change.


Subject(s)
Environmental Monitoring , Metals/analysis , Ovum/chemistry , Sea Bream/metabolism , Water Pollutants/analysis , Animals , Carbon Dioxide , Metals/metabolism , Water Pollutants/metabolism
15.
J Environ Radioact ; 192: 10-13, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29870834

ABSTRACT

Ocean acidification have been shown to not affect the capacity of bivalves to bioaccumulation 134Cs in their tissue; but as this was studied on only one species to date. There is therefore a need to verify if this holds true for other bivalve species or other marine invertebrates. The present short communication confirms that in the scallop Mimachlamys varia and the prawn Penaeus japonicus, two species that supposedly have a record to preferentially concentrates this radionuclide, that bioconcentration of 134Cs was shown not to be influenced by a decreasing pH (and thereby increasing seawater pCO2). Although the dissolved 134Cs was taken up in a similar manner under different pH values (8.1, 7.8, and 7.5) in both species, being described by a saturation state equilibrium model, the species displayed different bioconcentration capacities of 134Cs: CFss in the prawns was approximately 10-fold higher than in scallops. Such results suggest that the Cs bioconcentration capacity are mainly dependent of the taxa and that uptake processes are independent the physiological ones involved in the biological responses of prawns and scallops to ocean acidification.


Subject(s)
Aquatic Organisms/metabolism , Carbon Dioxide/chemistry , Cesium Radioisotopes/metabolism , Seawater/chemistry , Water Pollutants, Radioactive/metabolism , Animals , Bivalvia , Cesium Radioisotopes/chemistry , Hydrogen-Ion Concentration , Penaeidae , Water Pollutants, Radioactive/chemistry
16.
J Environ Radioact ; 190-191: 20-30, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29738950

ABSTRACT

The marine organisms which inhabit the coastline are exposed to a number of anthropogenic pressures that may interact. For instance, the accumulation of toxic metals present in coastal waters is expected to be modified by ocean acidification through e.g. changes in physiological performance and/or elements availability. Changes in bioaccumulation due to lowering pH are likely to be differently affected depending on the nature (essential vs. non-essential) and speciation of each element. The Mediterranean is of high concern for possible cumulative effects due to strong human influences on the coastline. The aim of this study was to determine the effect of ocean acidification (from pH 8.1 down to -1.0 pH units) on the incorporation kinetics of six trace metals (Mn, Co, Zn, Se, Ag, Cd, Cs) and one radionuclide (241Am) in the larvae of an economically- and ecologically-relevant sea urchin of the Mediterranean coastline: Paracentrotus lividus. The radiolabelled metals and radionuclides added in trace concentrations allowed precise tracing of their incorporation in larvae during the first 74 h of their development. Independently of the expected indirect effect of pH on larval size/developmental rates, Paracentrotus lividus larvae exposed to decreasing pHs incorporated significantly more Mn and Ag and slightly less Cd. The incorporation of Co, Cs and 241Am was unchanged, and Zn and Se exhibited complex incorporation behaviors. Studies such as this are necessary prerequisites to the implementation of metal toxicity mitigation policies for the future ocean. We discuss possible reasons and mechanisms for the specific effect of pH on each metals.


Subject(s)
Larva/chemistry , Metals, Heavy/analysis , Paracentrotus/chemistry , Seawater/chemistry , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , Mediterranean Sea , Oceans and Seas
17.
J Environ Radioact ; 184-185: 114-121, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29396269

ABSTRACT

The pH of seawater around the world is expected to continue its decline in the near future in response to ocean acidification that is driven by heightened atmospheric CO2 emissions. Concomitantly, economically-important molluscs that live in coastal waters including estuaries and embayments, may be exposed to a wide assortment of contaminants, including trace metals and radionuclides. Seawater acidification may alter both the chemical speciation of select elements as well as the physiology of organisms, and may thus pose at risk to many shellfish species, including the manila clam Ruditapes philippinarum. The bioconcentration efficiency of two common radionuclides associated with the nuclear fuel cycle, 134Cs and 57Co, were investigated by exposing live clams to dissolved 134Cs and 57Co at control (pH = 8.1) and two lowered pH (pH = 7.8 and 7.5) levels using controlled aquaria. The uptake and depuration kinetics of the two radionuclides in the whole-body clam were followed for 21 and 35 days, respectively. At steady-state equilibrium, the concentration factor (CFss) for 57Co increased as the pH decreased (i.e. 130 ± 5, 194 ± 6, and 258 ± 10 at pH levels 8.1, 7.8 and 7.5, respectively), whereas the 134Cs uptake was not influenced by a change in pH conditions. During depuration, the lowest depuration rate constant of 57Co by the manila clam was observed at the intermediate pH of 7.8. An increase in the accumulation of 57Co at the intermediate pH value was thought to be caused mainly by the aragonitic shell of the clam, as well as the low salinity and alkalinity of seawater used in the experiment. Considering that accumulation consists of uptake and depuration, among the three pH conditions moderately acidified seawater enhanced most the accumulation of 57Co. Accumulation of 134Cs was not strongly influenced by a reduced pH condition, as represented by an analogous uptake constant rate and CFss in each treatment. Such results suggest that future seawater pH values that are projected to be lower in the next decades, may pose a risk for calcium-bearing organisms such as shellfish.


Subject(s)
Bivalvia/metabolism , Cobalt/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Animals , Cesium/metabolism , Cobalt/metabolism , Hydrogen-Ion Concentration , Salinity , Seafood , Water Pollutants, Chemical/metabolism
18.
Environ Res ; 155: 123-133, 2017 05.
Article in English | MEDLINE | ID: mdl-28214715

ABSTRACT

In recent decades, cephalopods have been shown to have very high capacities to accumulate most trace elements, regardless of whether they are essential (e.g., Cu and Zn) or non-essential (e.g., Ag and Cd). Among the different pathways of exposure to trace elements, the trophic pathway appears to be the major route of assimilation for numerous metals, including Cd, Co, Hg and Zn. Once assimilated, trace elements are distributed in the organism, accumulating in storage organs. The digestive gland is the main organ in which many trace elements accumulate, whichever of the exposure pathway. For example, this organ can present Cd concentrations reaching hundreds to thousands of ppm for some species, even though the digestive gland represents only a small proportion of the total mass of the animal. Such a specific organotropism towards the digestive gland of both essential and non-essential elements, regardless of the exposure pathway, poses the question of the detoxification processes evolved by cephalopods in order to sustain these high concentrations. This paper reviews the current knowledge on the bioaccumulation of trace elements in cephalopods, the differences in pharmaco-dynamics between organs and tissues, and the detoxification processes they use to counteract trace element toxicity. A peculiar focus has been done on the bioaccumulation within the digestive gland by investigating the subcellular locations of trace elements and their protein ligands.


Subject(s)
Cephalopoda/metabolism , Metals/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring , Inactivation, Metabolic , Tissue Distribution
19.
Glob Chang Biol ; 22(12): 3888-3900, 2016 12.
Article in English | MEDLINE | ID: mdl-27279327

ABSTRACT

Shelled pteropods play key roles in the global carbon cycle and food webs of various ecosystems. Their thin external shell is sensitive to small changes in pH, and shell dissolution has already been observed in areas where aragonite saturation state is ~1. A decline in pteropod abundance has the potential to disrupt trophic networks and directly impact commercial fisheries. Therefore, it is crucial to understand how pteropods will be affected by global environmental change, particularly ocean acidification. In this study, physiological and molecular approaches were used to investigate the response of the Mediterranean pteropod, Heliconoides inflatus, to pH values projected for 2100 under a moderate emissions trajectory (RCP6.0). Pteropods were subjected to pHT 7.9 for 3 days, and gene expression levels, calcification and respiration rates were measured relative to pHT 8.1 controls. Gross calcification decreased markedly under low pH conditions, while genes potentially involved in calcification were up-regulated, reflecting the inability of pteropods to maintain calcification rates. Gene expression data imply that under low pH conditions, both metabolic processes and protein synthesis may be compromised, while genes involved in acid-base regulation were up-regulated. A large number of genes related to nervous system structure and function were also up-regulated in the low pH treatment, including a GABAA receptor subunit. This observation is particularly interesting because GABAA receptor disturbances, leading to altered behavior, have been documented in several other marine animals after exposure to elevated CO2 . The up-regulation of many genes involved in nervous system function suggests that exposure to low pH could have major effects on pteropod behavior. This study illustrates the power of combining physiological and molecular approaches. It also reveals the importance of behavioral analyses in studies aimed at understanding the impacts of low pH on marine animals.


Subject(s)
Calcification, Physiologic , Gastropoda/physiology , Hydrogen-Ion Concentration , Nervous System/metabolism , Animal Shells , Animals , Carbon Cycle , Ecosystem , Food Chain , Gastropoda/metabolism
20.
Chemosphere ; 144: 1885-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26544727

ABSTRACT

Numerous field studies highlighted the capacities of marine sponges to bioaccumulate trace elements and assessed their potential as biomonitors of the marine environment. Experimental works demonstrated that dissolved metals and radionuclides can be taken up directly by sponge tissues but, to the best of our knowledge, little is known on the contribution of the dietary pathway through the consumption of contaminated bacteria considered as one of the trophic source in sponge diet. Objectives of this work are to study trophic transfer of radiotracers (110m)Ag, (241)Am, (109)Cd, (57)Co, (134)Cs, (54)Mn and (65)Zn from the marine bacteria Pseudomonas stutzeri to the Mediterranean sponges Aplysina cavernicola and Ircinia oros. P. stutzeri efficiently bioaccumulated trace elements in our culture experimental conditions with CF comprised between 10(5) and 10(7) after 48 h of growth in radiolabeled medium. When fed with these radiolabelled bacteria, A. cavernicola took up around 60% of radiotracers accumulated in trophic source except (134)Cs for which only 8% has been transferred from bacteria to sponge. Contrasting to this, I. oros retained only 7% of (110m)Ag, (109)Cd and (65)Zn counted in bacteria, but retained 2-fold longer accumulated metals in its tissues. The sponge inter-specific differences of accumulation and depuration following a trophic exposure are discussed with respect to the structure and the clearance capacities of each species.


Subject(s)
Bacteria/metabolism , Environmental Monitoring , Food Chain , Porifera/metabolism , Radioisotopes/metabolism , Water Pollutants/metabolism , Animals , Mediterranean Sea , Trace Elements/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...