Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(3): 034716, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012800

ABSTRACT

This article reports on the use of a Field Programmable Gate Array (FPGA) platform for local ultra-stable optical frequency distribution through a 90 m-long fiber network. This platform is used to implement a fully digital treatment of the Doppler-cancellation scheme required by fiber links to be able to distribute ultra-stable frequencies. We present a novel protocol that uses aliased images of a digital synthesizer output to directly generate signals above the Nyquist frequency. This approach significantly simplifies the setup, making it easy to duplicate within a local fiber network. We demonstrate performances enabling the distribution of an optical signal with an instability below 10-17 at 1 s at the receiver end. We also use the board to implement an original characterization method. It leads to an efficient characterization of the disturbance rejection of the system that can be realized without accessing the remote output of the fiber link.

2.
Opt Express ; 30(20): 35179-35188, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258475

ABSTRACT

The stabilization of lasers on ultra-stable optical cavities by the Pound-Drever-Hall (PDH) technique is a widely used method. The PDH method relies on the phase-modulation of the laser, which is usually performed by an electro-optic modulator (EOM). When approaching the 10-16 fractional frequency stability level, this technology requires an active control of the residual amplitude modulation (RAM) generated by the EOM in order to bring the frequency stability of the laser down to the thermal noise limit of the ultra-stable cavity. In this article, we report on the development of an active system of RAM reduction based on a free space EOM, which is used to perform PDH-stabilization of a laser on a cryogenic silicon cavity. A minimum RAM instability of 1.4 × 10-7 is obtained by employing a digital servo that stabilizes the EOM DC electric field, the crystal temperature and the laser power. Considering an ultra-stable cavity with a finesse of 2.5 × 105, this RAM level would contribute to the fractional frequency instability at the level of about 5 × 10-19, well below the state of the art thermal noise limit of a few 10-17.

3.
Article in English | MEDLINE | ID: mdl-34727031

ABSTRACT

Progress made in optical references, including ultrastable Fabry-Perot cavities, optical frequency combs, and optical atomic clocks, has driven the need for ultrastable optical fiber networks. Telecom-wavelength ultrapure optical signal transport has been demonstrated on distances ranging from the laboratory scale to the continental scale. In this article, we present a Doppler-cancellation setup based on a digital phase-locked loop (PLL) for ultrastable optical signal dissemination over fiber. The optical phase stabilization setup is based on a usual heterodyne Michelson-interferometer setup, while the software-defined radio (SDR) implementation of the PLL is based on a compact commercial board embedding a field-programmable gate array and analog-to-digital and digital-to-analog converters. Using three different configurations, including an undersampling method, we demonstrate a 20-m-long fiber link with residual fractional frequency instability as low as 10-18 at 1000 s and optical phase noise of -70 dBc/Hz at 1 Hz with a telecom frequency carrier.

4.
Appl Opt ; 57(22): 6470-6473, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30117886

ABSTRACT

We present the first experimental characterization of our ultracompact, ultrastable laser. The heart of the apparatus is an original Fabry-Perot cavity with 25 mm length and pyramidal geometry, equipped with highly reflective crystalline coatings. The cavity, along with its vacuum chamber and optical setup, fits inside a 30 L volume. We have measured the cavity's thermal and vibration sensitivities and present our first estimation of the cavity fractional frequency instability at σy(1 s)=7.5×10-15.

5.
Sci Rep ; 8(1): 4803, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29540805

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 8(1): 1997, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386649

ABSTRACT

Optical frequency division of an ultrastable laser to the microwave frequency range by an optical frequency comb has allowed the generation of microwave signals with unprecedently high spectral purity and stability. However, the generated microwave signal will suffer from a very low power level if no external optical frequency comb repetition rate multiplication device is used. This paper reports theoretical and experimental studies on the beneficial use of the Vernier effect together with the spectral selective filtering in a double directional coupler add-drop optical fibre ring resonator to increase the comb repetition rate and generate high power microwaves. The studies are focused on two selective filtering aspects: the high rejection of undesirable optical modes of the frequency comb and the transmission of the desirable modes with the lowest possible loss. Moreover, the conservation of the frequency comb stability and linewidth at the resonator output is particularly considered. Accordingly, a fibre ring resonator is designed, fabricated, and characterized, and a technique to stabilize the resonator's resonance comb is proposed. A significant power gain is achieved for the photonically generated beat note at 10 GHz. Routes to highly improve the performances of such proof-of-concept device are also discussed.

7.
Appl Opt ; 54(32): 9446-9, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26560771

ABSTRACT

Interferometric wavelength meters have attained frequency resolutions down to the megahertz range. In particular, Fizeau interferometers, which have no moving parts, are becoming a popular tool for laser characterization and stabilization. In this paper, we characterize such a wavelength meter using an ultrastable laser in terms of relative frequency instability σ(y)(τ) and demonstrate that it can achieve a short-term instability σ(y)(1s)≈2×10(-10) and a frequency drift of order 10 MHz/day. We use this apparatus to demonstrate frequency control of a near-infrared laser, where a frequency instability below 3×10(-10) from 1 to 2000 s is achieved. Such performance is, for example, adequate for ion trapping and atom cooling experiments.

8.
Article in English | MEDLINE | ID: mdl-20040433

ABSTRACT

We present an atomic clock based on the interrogation of magnetically trapped (87)Rb atoms. Two photons, in the microwave and radiofrequency domain, excite the clock transition. At a magnetic field of 3.23 G the clock transition from |F = 1, m(F) = -1> to |F = 2, m(F) = 1> is 1st-order insensitive to magnetic field variations. Ramsey interrogation times longer than 2 s can be achieved, leading to a projected clock stability in the low 10(-13) at 1 s for a cloud of 10(5) atoms. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package as small as (5 cm)(3). We describe the experimental setup and show preliminary Ramsey fringes of line width 1.25 Hz.


Subject(s)
Radioisotopes/chemistry , Rubidium/chemistry , Time Factors , Photons , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...