Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 6180, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039059

ABSTRACT

Viruses have remarkable physical properties and complex interactions with their environment. However, their aggregation in confined spaces remains unexplored, although this phenomenon is of paramount importance for understanding viral infectivity. Using hydrodynamical driving and optical detection, we developed a method to detect the transport of single virus in real time through synthetic nanopores. We unveiled a jamming phenomenon specifically associated with virus confinement under flow. We showed that the interactions of viral particles with themselves and with the pore surface were critical for clog formation. Based on the detailed screening of the physical and chemical determinants, we proposed a simple dynamical model that recapitulated all the experimental observations. Our results pave the way for the study of jamming phenomena in the presence of more complex interactions.


Subject(s)
Nanopores , Virion , Hydrodynamics
2.
J Phys Chem Lett ; 15(27): 6996-7002, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38949503

ABSTRACT

Intrachain transport in molecular junctions (MJs) longer than 5 nm has been modeled within the theoretical framework of Marcus theory. We show that in oligo(bisthienylbenzene)-based MJs, electronic transport involves polarons, localized on three monomers that are close to 4 nm in length. They hop and tunnel between adjacent localized sites with reorganization energies λ close to 400-600 meV and electronic coupling parameters Hab close to λ/2. As a consequence, the activation energy for intrachain transport, given by the equation ΔG* = (λ/4)(1 - 2Hab/λ)2, is close to zero, and transport along the chain is activationless, in agreement with experimental observation. On the contrary, similar calculations on conjugated oligonaphthalenefluoreneimine wires show that Hab is much less than λ/2 and predict that the activation energies for intrachain hopping between adjacent sites, close to λ/4, are ∼115 meV. This work proposes a new perspective for understanding long-range activationless transport in MJs beyond the tunneling regime.

3.
ACS Appl Mater Interfaces ; 16(20): 26521-26536, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38713480

ABSTRACT

A functionalization process has been developed and the experimental conditions optimized allowing the immobilization of first-row transition metal (Mn+) containing polyoxometalates (POMs) with the formula [M(H2O)P2W17O61](10-n)- on transparent indium-tin oxide (ITO) electrodes for electrochromic applications. Both flat ITO grafted with 4-sulfophenyl moieties and sulfonate-functionalized vertically oriented silica films on ITO have been used as electrode supports to evaluate possible confinement effects provided by the mesoporous matrix on the stability of the modified surfaces and their electrochromic properties. Functionalization involved a two-step sequential process: (i) the immobilization of hexaaqua metallic ions, such as Fe(H2O)63+, onto the sulfonate-functionalized materials achieved through hydrogen bonding interactions between the sulfonate functions and aqua ligands (water molecules) coordinated to the metallic ions facilitating and stabilizing the attachment of the metallic ions to the sulfonated surfaces; (ii) their coordination to [P2W17O61]10- species to generate "in situ" the target [Fe(H2O)P2W17O61]7- moieties. Comparison of the characterized surfaces clearly evidenced a significant improvement in the long-term stability of the nanostructured [Fe(H2O)P2W17O61]7--functionalized silica films compared to the less constrained flat [Fe(H2O)P2W17O61]7--modified ITO electrodes for which a rapid loss of [P2W17O61]10- species was observed. Concordantly, the [Fe(H2O)P2W17O61]7- POM confined in the mesoporous films coated on ITO gave rise to much better and stable electrochromic properties, with a transmittance modulation of 40% at 515 nm.

4.
Nano Lett ; 23(11): 4862-4869, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37212527

ABSTRACT

Mimicking and extending the gating properties of biological pores is of paramount interest for the fabrication of membranes that could be used in filtration or drug processing. Here, we build a selective and switchable nanopore for macromolecular cargo transport. Our approach exploits polymer graftings within artificial nanopores to control the translocation of biomolecules. To measure transport at the scale of individual biomolecules, we use fluorescence microscopy with a zero-mode waveguide set up. We show that grafting polymers that exhibit a lower critical solution temperature creates a toggle switch between an open and closed state of the nanopore depending on the temperature. We demonstrate tight control over the transport of DNA and viral capsids with a sharp transition (∼1 °C) and present a simple physical model that predicts key features of this transition. Our approach provides the potential for controllable and responsive nanopores in a range of applications.

5.
J Phys Chem Lett ; 13(51): 11990-11995, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36537879

ABSTRACT

The effect of the density of active molecules in molecular junctions (MJs) has been investigated by using a host/guest strategy. Mixed layers consisting of oligothiophene (BTB) encapsulated by ß-cyclodextrin (BTB@ß-CD) were generated. Cyclodextrins were then removed, and the pinholes generated were filled with BTB to obtain BTB@BTB films. MJs based on mixed BTB@ß-CD and BTB@BTB layers, as well as single-component BTB MJs, were compared. The variation of ln J vs thickness is similar for all systems while the Jo of BTB@ß-CD MJs is 20 times lower than that of BTB MJs. After ß-cyclodextrin has been removed, and the pinholes filled, Jo increases and reaches the same value as for the BTB MJs, showing that the conductance scales with the number of active molecules. This strategy provides a unique method for investigating molecular interactions in direct tunneling MJs as well as the possibility of fabricating new functionalized MJs based on mixed layers.


Subject(s)
Cyclodextrins , beta-Cyclodextrins
6.
Nano Lett ; 22(10): 4253-4259, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35503742

ABSTRACT

Plasmon-induced diazonium reduction was used to graft an organic semiconductor, namely oligo(bisthienylbenzene) (BTB), onto square arrays of gold nanoparticles (NPs) of various diameters. Grafting was evidenced by scanning electron microscopy (SEM) measurements by the extinction spectra of the localized surface plasmon resonance, as well as by Raman and energy dispersive X-ray (EDX) spectroscopies. We show that BTB is selectively deposited around the NPs. The thickness of the layer increases with increasing irradiation time and reaches a limit which depends on the size of the NPs with the thicker organic layers being generated for smaller NPs. Under polarized irradiation, BTB growth is strongly anisotropic. Starting from arrays with square gratings and spherical NPs, long-range plasmon-induced anisotropic growth makes it possible to generate in the direction of the polarized light, lines, columns, or lines and columns of NPs connected by an organic semiconductor. These results demonstrate that the growth is due to hot electrons.

7.
Nanomaterials (Basel) ; 12(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35458026

ABSTRACT

Diarylethene is a prototypical molecular switch that can be reversibly photoisomerized between its open and closed forms. Ligands bpy-DAE-bpy, consisting of a phenyl-diarylethene-phenyl (DAE) central core and bipyridine (bpy) terminal substituents, are able to self-organize. They are investigated by scanning tunneling microscopy at the solid-liquid interface. Upon light irradiation, cooperative photochromic switching of the ligands is recognized down to the submolecular level. The closed isomers show different electron density of states (DOS) contrasts, attributed to the HOMO or LUMO molecular orbitals observed. More importantly, the LUMO images show remarkable differences between the open and closed isomers, attributed to combined topographic and electronic contrasts mainly on the DAE moieties. The electronic contrasts from multiple HOMO or LUMO distributions, combined with topographic distortion of the open or closed DAE, are interpreted by density functional theory (DFT) calculations.

8.
Nanomaterials (Basel) ; 12(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458042

ABSTRACT

Polymers obtained by on-surface chemistry have emerged as a class of promising materials. Here, we propose a new strategy to obtain self-assembled 1D polymers by using photochemical [2+2] cyclo-addition or by using a mild thermal annealing. All nanostructures are fully characterized by using scanning tunneling microscopy at ambient conditions on a graphite surface. We demonstrated that nature of the stimulus strongly alters the overall quality of the resulting polymers in terms of length and number of defects. This new way is an efficient method to elaborate on-surface self-assembled 1D polymers.

9.
Nano Lett ; 21(18): 7555-7560, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34478314

ABSTRACT

Photoactive molecular junctions, based on 4 nm thick diarylethene (DAE) and 5 nm thick bisthienylbenzene (BTB) layers, were fabricated by electrochemical deposition. Total thickness was around 9 nm, that is, above the direct tunneling limit and in the hopping regime. The DAE units were switched between their open and closed forms. The DAE/BTB bilayer structure exhibits new electronic functions combining photoswitching and photorectification. The open form of DAE/BTB shows low conductance and asymmetric I-V curves while the closed form shows symmetric I-V curves and high conductance. More importantly, unprecedented ON/OFF current ratios of over 10 000 at 1 V were reproducibly measured.


Subject(s)
Electronics
10.
Nanomaterials (Basel) ; 11(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34443789

ABSTRACT

This paper describes a rapid bottom-up approach to selectively functionalize gold nanoparticles (AuNPs) on an indium tin oxide (ITO) substrate using the plasmon confinement effect. The plasmonic substrates based on a AuNP-free surfactant were fabricated by electrochemical deposition. Using this bottom-up technique, many sub-30 nm spatial gaps between the deposited AuNPs were randomly generated on the ITO substrate, which is difficult to obtain with a top-down approach (i.e., E-beam lithography) due to its fabrication limits. The 4-Aminodiphenyl (ADP) molecules were grafted directly onto the AuNPs through a plasmon-induced reduction of the 4-Aminodiphenyl diazonium salts (ADPD). The ADP organic layer preferentially grew in the narrow gaps between the many adjacent AuNPs to create interconnected AuNPs. This novel strategy opens up an efficient technique for the localized surface modification at the nanoscale over a macroscopic area, which is anticipated to be an advanced nanofabrication technique.

11.
Nano Lett ; 21(15): 6540-6548, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34286999

ABSTRACT

Single-molecule junctions (SMJs) have been fabricated using layers generated by diazonium electroreduction. This process creates a C-Au covalent bond between the molecule and the electrode. Rigid oligomers of variable length, based on porphyrin derivatives in their free base or cobalt complex forms, have been grafted on the surface. The conductance of the oligomers has been studied by a scanning tunneling microscopy break junction (STM-bj) technique and G(t) measurements, and the lifetime of the SMJs has been investigated. The conductance histograms indicate that charge transport in the porphyrins is relatively efficient and influenced by the presence of the cobalt center. With both systems, random telegraph G(t) signals are easily recorded, showing SMJ on/off states. The SMJs then stabilize and exhibit a surprisingly long lifetime around 10 s, and attenuation plots, obtained by both G(t) and STM-bj measurements, give identical values. This work shows that highly stable SMJs can be prepared using a diazonium grafting approach.

12.
Nano Lett ; 20(9): 6899-6907, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32786941

ABSTRACT

Thin layers of cobalt and ruthenium polypyridyl-oligomers with thicknesses between 2 and 8 nm were deposited on gold by electrochemical reduction of diazonium salts. A scanning tunneling microscope was used to create single-molecule junctions (SMJs). The charge transport properties of the Au-[Co(tpy)2]n-Au (n = 1-4) SMJs do not depend markedly on the oligomer length, have an extremely low attenuation factor (ß âˆ¼ 0.19 nm-1), and do not show a thickness-dependent transition between two mechanisms. Resonant charge transport is proposed as the main transport mechanism. The SMJ conductance decreases by 1 order of magnitude upon changing the metal from Co to Ru. In Au-[Ru(tpy)2]n-Au and Au-[Ru(bpy)3]n-Au SMJs, a charge transport transition from direct tunneling to hopping is evidenced by a break in the length-dependent ß-plot. The three different mechanisms observed are a clear molecular signature on transport in SMJs. Most importantly, these results are in good agreement with those obtained on large-area molecular junctions.

13.
J Am Chem Soc ; 142(17): 7732-7736, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32279488

ABSTRACT

Thin layers of diarylethene oligomers (oligo(DAE)) were deposited by electrochemical reduction of a diazonium salt on glassy carbon and gold electrodes. The layers were fully characterized using electrochemistry, XPS, and AFM, and switching between open and closed forms using light was evidenced. Solid-state molecular junctions (MJs), in which a C-AFM tip is used as the top contact, were fabricated with total layer thicknesses fixed at 2-3 nm and 8-9 nm, i.e. below and above the direct tunneling limit. DAE was then photoswitched between its open and closed forms. Oligo(DAE) MJs using the open form of DAE are highly resistive while those with DAE in the closed form are more conductive. ON/OFF ratios of 2-3 and 200-400 were obtained for 3-nm- and 9-nm-thick DAE MJs, respectively.

14.
Nanoscale ; 12(2): 1181, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31845934

ABSTRACT

Correction for 'Multi-functional switches of ditopic ligands with azobenzene central bridges at a molecular scale' by Imen Hnid et al., Nanoscale, 2019, 11, 23042-23048.

15.
Langmuir ; 35(47): 15071-15077, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31660746

ABSTRACT

In this work, we have combined nanosphere lithography with electrochemical reduction of aryldiazonium salts to elaborate nanostructured mixed layers of organic materials. The strategy consists first in the deposition of a close-packed hexagonal monolayer of microbeads used as a mask for the electroreduction of a first aryldiazonium salt. After removing the beads, an ultrathin organic layer with holes remains. Then, a second aryldiazonium salt is electrochemically reduced selectively inside the holes. The relative thickness of the two deposited materials can be changed, leading to mixed layers of different topographies. Moreover, using diazoniums with complementary redox properties, a modified bifunctional electrode acting as a filter for electron transfer with a low potential gap has been obtained. Such layers are similar to low-band-gap organic semiconductors that can be easily n or p doped. Despite this analogy, the oxidation and reduction of redox probes in solution on such nanostructured surfaces occur on completely separated areas of the mixed layer.

16.
J Phys Chem Lett ; 10(15): 4164-4169, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31265312

ABSTRACT

Various architectures have been generated and observed by STM at a solid/liquid interface resulting from an in situ chemical reaction between the bipyridine terminal groups of a ditopic ligand and Co(II) ions. Large monodomains of one-dimensional (1D) double wires are formed by Co(II)/ligand coordination, with polymer lengths as long as 150 nm. The polymers are organized as parallel wires 8 nm apart, and the voids between wires are occupied by solvent molecules. Two-dimensional (2D) grids, showing high surface mobility, coexist with the wires. The wires are formed from linear chain motifs where each cobalt center is bonded to two bipyridines. 2D grids are generated from a bifurcation node where one cobalt bonds to three bipyridines. Surface reconstruction of the grids and of the 1D wires was observed under the STM tip. As an exciting result, analysis of these movements strongly indicates surface reactions at the solid/liquid interface.

17.
Nanoscale Adv ; 1(1): 414-420, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-36132450

ABSTRACT

The quantum interaction between molecules and electrode materials at molecule/electrode interfaces is a major ingredient in the electron transport properties of organic junctions. Driven by the coupling strength between the two materials, it results mainly in the broadening and energy shift of the interacting molecular orbitals. Using new electrode materials, such as the recently developed semi-conducting two-dimensional nanomaterials, has become a significant advancement in the field of molecular/organic electronics that opens new possibilities for controlling the interfacial electronic properties and thus the charge injection properties. In this article, we report the use of atomically thin two-dimensional multilayer graphene films as the base electrode in organic junctions with a vertical architecture. The interfacial electronic structure dominated by the covalent bonding between bis-thienyl benzene diazonium-based molecules and the multilayer graphene electrode has been probed by ultraviolet photoelectron spectroscopy and the results are compared with those obtained on junctions with standard Au electrodes. Room temperature injection properties of such interfaces have also been explored by electron transport measurements. We find that, despite strong variations of the density of states, the Fermi energy and the injection barriers, both organic junctions with Au base electrodes and multilayer graphene base electrodes show similar electronic responses. We explain this observation by the strong orbital coupling occurring at the bottom electrode/bis-thienyl benzene molecule interface and by the pinning of the hybridized molecular orbitals.

18.
J Am Chem Soc ; 140(32): 10131-10134, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30059213

ABSTRACT

Thin layers of viologen-based oligomers with thicknesses between 3 and 14 nm were deposited on gold electrodes by electrochemical reduction of a diazonium salt, and then a Ti/Au top contact was applied to complete a solid-state molecular junction (MJ). MJs show symmetric J- V curves and highly efficient long-range transport, with an attenuation factor as small as 0.25 nm-1. This is attributed both to the fact that the viologen LUMO energy lies between the energies of the Fermi levels of the two contacts and to strong electronic coupling between molecules and contacts. As a consequence, resonant tunneling is likely to be the dominant transport mechanism within these MJs, but the temperature dependence of the transport properties suggests that activated redox hopping plays a role at high temperature.

19.
Nanoscale Horiz ; 3(1): 45-52, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-32254109

ABSTRACT

Much of the motivation for developing molecular electronic devices is the prospect of achieving novel electronic functions by varying molecular structure. We describe a "building block" approach for molecular junctions resulting in one, two or three nanometer-thick molecular layers in a commercially proven junction design. A single layer of anthraquinone between carbon electrodes provides a tunnel device with applications in electronic music, and a second layer of a thiophene derivative yields a molecular rectifier with quite different audio characteristics. A third layer of lithium benzoate produces a redox-active device with possible applications in non-volatile memory devices or on-chip energy storage. The building block approach forms a basis for "rational design" of electronic functions, in which layers of varying structure produce distinct and desirable electronic behaviours.

20.
Sci Rep ; 7(1): 17752, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259182

ABSTRACT

The formation of copper atomic contacts has been investigated. Copper nanowires were grown by electrochemical deposition, in the scanning electrochemical microscopy (SECM) configuration, from a platinum microelectrode to an indium tin oxide (ITO) substrate. Self-termination leaves copper filaments between the two electrodes with an atomic point contact at the ITO electrode. Histogram analysis shows that the conductance of this contact is close to, or less than, 1 G0. Atomic contacts were also fabricated on ITO electrodes covered with vertically-aligned mesoporous silica films. Scanning Transmission Electron Microscopy images show that copper filaments occupy individual isolated nanopores. Contacts generated on bare ITO break down rapidly in sodium salicylate, whereas those generated in ITO/nanopores are unaffected; the nanopores protect the copper filaments. Finally, atomic switch behaviour was obtained using these ITO and ITO/nanopores electrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...