Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Foods ; 13(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38254505

ABSTRACT

The health and balance of the gut microbiota are known to be linked to diet composition and source, with fermented products and dietary proteins potentially providing an exceptional advantage for the gut. The purpose of this study was to evaluate the effect of protein hydrolysis, using a probiotic beverage enriched with either cricket protein (CP) or cricket protein hydrolysates (CP.Hs), on the composition of the gut microbiota of rats. Taxonomic characterization of the gut microbiota in fecal samples was carried out after a 14-day nutritional study to identify modifications induced by a CP- and CP.H-enriched fermented probiotic product. The results showed no significant differences (p > 0.05) in the diversity and richness of the gut microbiota among the groups fed with casein (positive control), CP-enriched, and fermented CP.H-enriched probiotic beverages; however, the overall composition of the microbiota was altered, with significant modifications in the relative abundance of several bacterial families and genera. In addition, fermented CP.H-enriched probiotic beverages could be related to the decrease in the number of potential pathogens such as Enterococcaceae. The association of gut microbiota with the nutritional parameters was determined and the results showed that digestibility and the protein efficiency ratio (PER) were highly associated with the abundance of several taxa.

2.
Br J Pharmacol ; 180(6): 721-739, 2023 03.
Article in English | MEDLINE | ID: mdl-36316276

ABSTRACT

BACKGROUND AND PURPOSE: Psychedelics elicit prosocial, antidepressant and anxiolytic effects via neuroplasticity, neurotransmission and neuro-immunomodulatory mechanisms. Whether psychedelics affect the brain endocannabinoid system and its extended version, the endocannabinoidome (eCBome) or the gut microbiome, remains unknown. EXPERIMENTAL APPROACH: Adult C57BL/6N male mice were administered lysergic acid diethylamide (LSD) or saline for 7 days. Sociability was assessed in the direct social interaction and three chambers tests. Prefrontal cortex and hippocampal endocannabinoids, endocannabinoid-like mediators and metabolites were quantified via high-pressure liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Neurotransmitter levels were assessed via HPLC-UV/fluorescence. Gut microbiome changes were investigated by 16S ribosomal DNA sequencing. KEY RESULTS: LSD increased social preference and novelty and decreased hippocampal levels of the N-acylethanolamines N-linoleoylethanolamine (LEA), anandamide (N-arachidonoylethanolamine) and N-docosahexaenoylethanolamine (DHEA); the monoacylglycerol 1/2-docosahexaenoylglycerol (1/2-DHG); the prostaglandins D2 (PGD2 ) and F2α (PGF2α ); thromboxane 2 and kynurenine. Prefrontal eCBome mediator and metabolite levels were less affected by the treatment. LSD decreased Shannon alpha diversity of the gut microbiota, prevented the decrease in the Firmicutes:Bacteroidetes ratio observed in saline-treated mice and altered the relative abundance of the bacterial taxa Bifidobacterium, Ileibacterium, Dubosiella and Rikenellaceae RC9. CONCLUSIONS AND IMPLICATIONS: The prosocial effects elicited by repeated LSD administration are accompanied by alterations of hippocampal eCBome and kynurenine levels, and the composition of the gut microbiota. Modulation of the hippocampal eCBome and kynurenine pathway might represent a mechanism by which psychedelic compounds elicit prosocial effects and affect the gut microbiome.


Subject(s)
Gastrointestinal Microbiome , Hallucinogens , Male , Animals , Mice , Lysergic Acid Diethylamide/chemistry , Lysergic Acid Diethylamide/pharmacology , Endocannabinoids , Tandem Mass Spectrometry/methods , Kynurenine , Mice, Inbred C57BL , Brain
3.
Front Immunol ; 13: 1028412, 2022.
Article in English | MEDLINE | ID: mdl-36439185

ABSTRACT

Dietary micronutrients act at the intestinal level, thereby influencing microbial communities, the host endocannabinoidome, and immune and anti-oxidative response. Selenium (Se) is a trace element with several health benefits. Indeed, Se plays an important role in the regulation of enzymes with antioxidative and anti-inflammatory activity as well as indicators of the level of oxidative stress, which, together with chronic low-grade inflammation, is associated to obesity. To understand how Se variations affect diet-related metabolic health, we fed female and male mice for 28 days with Se-depleted or Se-enriched diets combined with low- and high-fat/sucrose diets. We quantified the plasma and intestinal endocannabinoidome, profiled the gut microbiota, and measured intestinal gene expression related to the immune and the antioxidant responses in the intestinal microenvironment. Overall, we show that intestinal segment-specific microbiota alterations occur following high-fat or low-fat diets enriched or depleted in Se, concomitantly with modifications of circulating endocannabinoidome mediators and changes in cytokine and antioxidant enzyme expression. Specifically, Se enrichment was associated with increased circulating plasma levels of 2-docosahexaenoyl-glycerol (2-DHG), a mediator with putative beneficial actions on metabolism and inflammation. Others eCBome mediators also responded to the diets. Concomitantly, changes in gut microbiota were observed in Se-enriched diets following a high-fat diet, including an increase in the relative abundance of Peptostreptococcaceae and Lactobacillaceae. With respect to the intestinal immune response and anti-oxidative gene expression, we observed a decrease in the expression of proinflammatory genes Il1ß and Tnfα in high-fat Se-enriched diets in caecum, while in ileum an increase in the expression levels of the antioxidant gene Gpx4 was observed following Se depletion. The sex of the animal influenced the response to the diet of both the gut microbiota and endocannabinoid mediators. These results identify Se as a regulator of the gut microbiome and endocannabinoidome in conjunction with high-fat diet, and might be relevant to the development of new nutritional strategies to improve metabolic health and chronic low-grade inflammation associated to metabolic disorders.


Subject(s)
Gastrointestinal Microbiome , Selenium , Mice , Male , Female , Animals , Gastrointestinal Microbiome/physiology , Selenium/pharmacology , Antioxidants , Diet, High-Fat/adverse effects , Inflammation
4.
Front Immunol ; 13: 882455, 2022.
Article in English | MEDLINE | ID: mdl-36238310

ABSTRACT

Omega-3 fatty acids support cardiometabolic health and reduce chronic low-grade inflammation. These fatty acids may impart their health benefits partly by modulating the endocannabinoidome and the gut microbiome, both of which are key regulators of metabolism and the inflammatory response. Whole hemp seeds (Cannabis sativa) are of exceptional nutritional value, being rich in omega-3 fatty acids. We assessed the effects of dietary substitution (equivalent to about 2 tablespoons of seeds a day for humans) of whole hemp seeds in comparison with whole linseeds in a diet-induced obesity mouse model and determined their effects on obesity and the gut microbiome-endocannabinoidome axis. We show that whole hemp seed substitution did not affect weigh gain, adiposity, or food intake, whereas linseed substitution did, in association with higher fasting glucose levels, greater insulin release during an oral glucose tolerance test, and higher levels of liver triglycerides than controls. Furthermore, hemp seed substitution mitigated diet-induced obesity-associated increases in intestinal permeability and circulating PAI-1 levels, while having no effects on markers of inflammation in epididymal adipose tissue, which were, however, increased in mice fed linseeds. Both hemp seeds and linseeds were able to modify the expression of several endocannabinoidome genes and markedly increased the levels of several omega-3 fatty acid-derived endocannabinoidome bioactive lipids with previously suggested anti-inflammatory actions in a tissue specific manner, despite the relatively low level of seed substitution. While neither diet markedly modified the gut microbiome, mice on the hemp seed diet had higher abundance of Clostridiaceae 1 and Rikenellaceae than mice fed linseed or control diet, respectively. Thus, hemp seed-containing foods might represent a source of healthy fats that are not likely to exacerbate the metabolic consequences of obesogenic diets while producing intestinal permeability protective effects and some anti-inflammatory actions.


Subject(s)
Cannabis , Fatty Acids, Omega-3 , Flax , Insulins , Animals , Diet, High-Fat/adverse effects , Fatty Acids , Flax/metabolism , Glucose , Humans , Inflammation , Mice , Obesity/metabolism , Plasminogen Activator Inhibitor 1 , Seeds/metabolism , Sucrose , Triglycerides/metabolism
5.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830242

ABSTRACT

Vitamin D deficiency is associated with poor mental health and dysmetabolism. Several metabolic abnormalities are associated with psychotic diseases, which can be compounded by atypical antipsychotics that induce weight gain and insulin resistance. These side-effects may be affected by vitamin D levels. The gut microbiota and endocannabinoidome (eCBome) are significant regulators of both metabolism and mental health, but their role in the development of atypical antipsychotic drug metabolic side-effects and their interaction with vitamin D status is unknown. We studied the effects of different combinations of vitamin D levels and atypical antipsychotic drug (olanzapine) exposure on whole-body metabolism and the eCBome-gut microbiota axis in female C57BL/6J mice under a high fat/high sucrose (HFHS) diet in an attempt to identify a link between the latter and the different metabolic outputs induced by the treatments. Olanzapine exerted a protective effect against diet-induced obesity and insulin resistance, largely independent of dietary vitamin D status. These changes were concomitant with olanzapine-mediated decreases in Trpv1 expression and increases in the levels of its agonists, including various N-acylethanolamines and 2-monoacylglycerols, which are consistent with the observed improvement in adiposity and metabolic status. Furthermore, while global gut bacteria community architecture was not altered by olanzapine, we identified changes in the relative abundances of various commensal bacterial families. Taken together, changes of eCBome and gut microbiota families under our experimental conditions might contribute to olanzapine and vitamin D-mediated inhibition of weight gain in mice on a HFHS diet.


Subject(s)
Antipsychotic Agents/pharmacology , Endocannabinoids/metabolism , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Olanzapine/pharmacology , Vitamin D/pharmacology , Aldo-Keto Reductases/genetics , Aldo-Keto Reductases/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Animals , Diet, High-Fat/adverse effects , Dietary Sucrose/adverse effects , Ethanolamines/metabolism , Female , Gene Expression Regulation , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Mice , Mice, Inbred C57BL , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Monoglycerides/metabolism , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Weight Gain/drug effects
6.
Gut Microbes ; 13(1): 2004070, 2021.
Article in English | MEDLINE | ID: mdl-34812123

ABSTRACT

The Developmental Origins of Health and Disease (DOHaD) concept has been proposed to explain the influence of environmental conditions during critical developmental stages on the risk of diseases in adulthood. The aim of this study was to compare the impact of the prenatal vs. postnatal environment on the gut microbiota in dams during the preconception, gestation and lactation periods and their consequences on metabolic outcomes in offspring. Here we used the cross-fostering technique, e.g. the exchange of pups following birth to a foster dam, to decipher the metabolic effects of the intrauterine versus postnatal environmental exposures to a polyphenol-rich cranberry extract (CE). CE administration to high-fat high-sucrose (HFHS)-fed dams improved glucose homeostasis and reduced liver steatosis in association with a shift in the maternal gut microbiota composition. Unexpectedly, we observed that the postnatal environment contributed to metabolic outcomes in female offspring, as revealed by adverse effects on adiposity and glucose metabolism, while no effect was observed in male offspring. In addition to the strong sexual dimorphism, we found a significant influence of the nursing mother on the community structure of the gut microbiota based on α-diversity and ß-diversity indices in offspring. Gut microbiota transplantation (GMT) experiments partly reproduced the observed phenotype in female offspring. Our data support the concept that the postnatal environment represents a critical window to influence future sex-dependent metabolic outcomes in offspring that are causally but partly linked with gut microbiome alterations.


Subject(s)
Gastrointestinal Microbiome/physiology , Glucose/metabolism , Sex Characteristics , Adiposity/drug effects , Animals , Diet, High-Fat/adverse effects , Female , Gastrointestinal Microbiome/drug effects , Glucose Intolerance/metabolism , Male , Maternal Nutritional Physiological Phenomena/physiology , Mice , Obesity/drug therapy , Obesity/metabolism , Obesity/microbiology , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Pregnancy , Vaccinium macrocarpon/chemistry , Weight Gain/drug effects
7.
Front Pharmacol ; 12: 706703, 2021.
Article in English | MEDLINE | ID: mdl-34603019

ABSTRACT

Rationale: The endocannabinoidome mediators, N-Oleoylglycine (OlGly) and N-Oleoylalanine (OlAla), have been shown to reduce acute naloxone-precipitated morphine withdrawal affective and somatic responses. Objectives: To determine the role and mechanism of action of OlGly and OlAla in withdrawal responses from chronic exposure to opiates in male Sprague-Dawley rats. Methods: Opiate withdrawal was produced: 1) spontaneously 24 h following chronic exposure to escalating doses of morphine over 14 days (Experiments 1 and 2) and steady-state exposure to heroin by minipumps for 12 days (Experiment 3), 2) by naloxone injection during steady-state heroin exposure (Experiment 4), 3) by naloxone injection during operant heroin self-administration (Experiment 5). Results: In Experiment 1, spontaneous morphine withdrawal produced somatic withdrawal reactions. The behavioral withdrawal reactions were accompanied by suppressed endogenous levels of OlGly in the nucleus accumbens, amygdala, and prefrontal cortex, N-Arachidonylglycerol and OlAla in the amygdala, 2-arachidonoylglycerol in the nucleus accumbens, amygdala and interoceptive insular cortex, and by changes in colonic microbiota composition. In Experiment 2, treatment with OlAla, but not OlGly, reduced spontaneous morphine withdrawal responses. In Experiment 3, OlAla attenuated spontaneous steady-state heroin withdrawal responses at both 5 and 20 mg/kg; OlGly only reduced withdrawal responses at the higher dose of 20 mg/kg. Experiment 4 demonstrated that naloxone-precipitated heroin withdrawal from steady-state exposure to heroin (7 mg/kg/day for 12 days) is accompanied by tissue-specific changes in brain or gut endocannabinoidome mediator, including OlGly and OlAla, levels and colonic microbiota composition, and that OlAla (5 mg/kg) attenuated behavioural withdrawal reactions, while also reversing some of the changes in brain and gut endocannabinoidome and gut microbiota induced by naloxone. Experiment 5 demonstrated that although OlAla (5 mg/kg) did not interfere with operant heroin self-administration on its own, it blocked naloxone-precipitated elevation of heroin self-administration behavior. Conclusion: These results suggest that OlAla and OlGly are two endogenous mediators whose brain concentrations respond to chronic opiate treatment and withdrawal concomitantly with changes in colon microbiota composition, and that OlAla may be more effective than OlGly in suppressing chronic opiate withdrawal responses.

8.
Microbiol Spectr ; 9(2): e0080521, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34612672

ABSTRACT

During anaerobic digestion (AD) of protein-rich wastewater, ammonium (NH4+) is released by amino acid degradation. High NH4+ concentrations disturb the AD microbiome balance, leading to process impairments. The sensitivity of the AD microbiome to NH4+ and the inhibition threshold depend on multiple parameters, especially the previous microbial acclimation to ammonium stress. However, little is known about the effect of different NH4+ acclimation strategies on the differential expression of key active microbial taxa. Here, we applied NH4+ inputs of increasing intensity (from 1.7 to 15.2 g N-NH4+ liters-1) in batch assays fed with synthetic wastewater, according to two different strategies: (i) direct independent inputs at a unique target concentration and (ii) successive inputs in a stepwise manner. In both strategies, along the NH4+ gradient, the active methanogens shifted from acetoclastic Methanosaeta to Methanosarcina and eventually hydrogenotrophic Methanoculleus. Despite shorter latency times, the successive input modality led to lower methane production rate, lower soluble chemical oxygen demand (sCOD) removal efficiency, and lower half maximal inhibitory concentration, together with higher volatile fatty acid (VFA) accumulation, compared to the independent input modality. These differential performances were associated with a drastically distinct succession pattern of the active bacterial partners in both experiments. In particular, the direct exposure modality was characterized by a progressive enrichment of VFA producers (mainly Tepidimicrobium) and syntrophic VFA oxidizers (mainly Syntrophaceticus) with increasing NH4+ concentration, while the successive exposure modality was characterized by a more dynamic succession of VFA producers (mainly Clostridium, Sporanaerobacter, Terrisporobacter) and syntrophic VFA oxidizers (mainly Tepidanaerobacter, Syntrophomonas). These results bring relevant insights for improved process management through inoculum adaptation, bioaugmentation, or community-driven optimization. IMPORTANCE Anaerobic digestion (AD) is an attractive biotechnological process for wastewater bioremediation and bioenergy production in the form of methane-rich biogas. However, AD can be inhibited by ammonium generated by protein-rich effluent, commonly found in agro-industrial activities. Insights in the microbial community composition and identification of AD key players are crucial for anticipating process impairments in response to ammonium stress. They can also help in defining an optimal microbiome adapted to high ammonium levels. Here, we compared two strategies for acclimation of AD microbiome to increasing ammonium concentration to better understand the effect of this stress on the methanogens and their bacterial partners. Our results suggest that long-term cumulative exposure to ammonia disrupted the AD microbiome more strongly than direct (independent) ammonium additions. We identified bioindicators with different NH4+ tolerance capacity among VFA producers and syntrophic VFA oxidizers.


Subject(s)
Acclimatization/physiology , Ammonium Compounds/metabolism , Bacteria, Anaerobic/metabolism , Biodegradation, Environmental , Methanomicrobiaceae/metabolism , Wastewater/chemistry , Amino Acids/metabolism , Ammonia/toxicity , Ammonium Compounds/analysis , Bioreactors/microbiology , Microbiota/physiology , Wastewater/microbiology
9.
Biomedicines ; 9(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34572432

ABSTRACT

Capsaicinoids, the pungent principles of chili peppers and prototypical activators of the transient receptor potential of the vanilloid type-1 (TRPV1) channel, which is a member of the expanded endocannabinoid system known as the endocannabinoidome (eCBome), counteract food intake and obesity. In this exploratory study, we examined the blood and stools from a subset of the participants in a cohort of reproductive-aged women with overweight/obesity who underwent a 12-week caloric restriction of 500 kcal/day with the administration of capsaicinoids (two capsules containing 100 mg of a capsicum annuum extract (CAE) each for a daily dose of 4 mg of capsaicinoids) or a placebo. Samples were collected immediately before and after the intervention, and plasma eCBome mediator levels (from 23 participants in total, 13 placebo and 10 CAE) and fecal microbiota taxa (from 15 participants in total, 9 placebo and 6 CAE) were profiled using LC-MS/MS and 16S metagenomic sequencing, respectively. CAE prevented the reduced caloric-intake-induced decrease in beneficial eCBome mediators, i.e., the TRPV1, GPR119 and/or PPARα agonists, N-oleoyl-ethanolamine, N-linoleoyl-ethanolamine and 2-oleoyl-glycerol, as well as the anti-inflammatory N-acyl-ethanolamines N-docosapentaenyl-ethanolamine and N-docosahexaenoyl-ethanolamine. CAE produced few but important alterations in the fecal microbiota, such as an increased relative abundance of the genus Flavonifractor, which is known to be inversely associated with obesity. Correlations between eCBome mediators and other potentially beneficial taxa were also observed, thus reinforcing the hypothesis of the existence of a link between the eCBome and the gut microbiome in obesity.

10.
Lancet Reg Health Eur ; 10: 100202, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34423327

ABSTRACT

BACKGROUND: Wastewater surveillance was proposed as an epidemiological tool to define the prevalence and evolution of the SARS-CoV-2 epidemics. However, most implemented SARS-CoV-2 wastewater surveillance projects were based on qPCR measurement of virus titers and did not address the mutational spectrum of SARS-CoV-2 circulating in the population. METHODS: We have implemented a nanopore RNA sequencing monitoring system in the city of Nice (France, 550,000 inhabitants). Between October 2020 and March 2021, we monthly analyzed the SARS-CoV-2 variants in 113 wastewater samples collected in the main wastewater treatment plant and 20 neighborhoods. FINDINGS: We initially detected the lineages predominant in Europe at the end of 2020 (B.1.160, B.1.177, B.1.367, B.1.474, and B.1.221). In January, a localized emergence of a variant (Spike:A522S) of the B.1.1.7 lineage occurred in one neighborhood. It rapidly spread and became dominant all over the city. Other variants of concern (B.1.351, P.1) were also detected in some neighborhoods, but at low frequency. Comparison with individual clinical samples collected during the same week showed that wastewater sequencing correctly identified the same lineages as those found in COVID-19 patients. INTERPRETATION: Wastewater sequencing allowed to document the diversity of SARS-CoV-2 sequences within the different neighborhoods of the city of Nice. Our results illustrate how sequencing of sewage samples can be used to track pathogen sequence diversity in the current pandemics and in future infectious disease outbreaks. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.

11.
Appetite ; 156: 104973, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32971226

ABSTRACT

The regulation of food intake and eating behaviours involves interactions between different systems. The endocannabinoidome, comprising several fatty acid-derived mediators, plays a central role in the regulation of food intake. Alterations of this system have been suggested to intervene in the aetiology of eating disorders. This study aimed to examine the associations between non-pathological eating behaviours and circulating endocannabinoidome mediators in a heterogeneous human population. Plasma 2-monoacyl-glycerol and N-acyl-ethanolamine congeners were measured by LC-MS/MS in a sample of 190 men and women. Eating behaviours were assessed using the Three-Factor Eating Questionnaire (TFEQ) and the Intuitive Eating Scale-2 (IES-2). Following adjustment for body mass index and age, plasma levels of omega-3 polyunsaturated fatty acid-derived 2-monoacyl-glycerols, 2-eicosapentaenoyl-glycerol (2-EPG) and 2-docosapentaenoyl-glycerol (2-DPG), were associated with higher intuitive eating scores (0.15 ≤ rho ≤ 0.20; p < 0.05). These associations were independent of the dietary intake of the fatty acid precursors of these 2-monoacyl-glycerols. However, almost no association was found between plasma levels of N-acyl-ethanolamine congeners and the TFEQ or the IES-2 scores. The results of the present study suggest the association of 2-monoacyl-glycerols, especially 2-EPG and 2-DPG, in the regulation of intuitive eating and the potential implication therein of bioactive lipids.


Subject(s)
Fatty Acids, Omega-3 , Tandem Mass Spectrometry , Chromatography, Liquid , Eating , Feeding Behavior , Female , Humans , Male
12.
Cells ; 9(12)2020 12 17.
Article in English | MEDLINE | ID: mdl-33348740

ABSTRACT

Monoglyceride lipase (MGLL) regulates metabolism by catabolizing monoacylglycerols (MAGs), including the endocannabinoid 2-arachidonoyl glycerol (2-AG) and some of its bioactive congeners, to the corresponding free fatty acids. Mgll knockout mice (Mgll-/-) exhibit elevated tissue levels of MAGs in association with resistance to the metabolic and cardiovascular perturbations induced by a high fat diet (HFD). The gut microbiome and its metabolic function are disrupted in obesity in a manner modulated by 2-arachidonoyl glycerol (2-AG's) main receptors, the cannabinoid CB1 receptors. We therefore hypothesized that Mgll-/- mice have an altered microbiome, that responds differently to diet-induced obesity from that of wild-type (WT) mice. We subjected mice to HFD and assessed changes in the microbiomes after 8 and 22 weeks. As expected, Mgll-/- mice showed decreased adiposity, improved insulin sensitivity, and altered circulating incretin/adipokine levels in response to HFD. Mgll-/- mice on a chow diet exhibited significantly higher levels of Hydrogenoanaerobacterium, Roseburia, and Ruminococcus than WT mice. The relative abundance of the Lactobacillaceae and Coriobacteriaceae and of the Lactobacillus, Enterorhabdus, Clostridium_XlVa, and Falsiporphyromonas genera was significantly altered by HFD in WT but not Mgll-/- mice. Differently abundant families were also associated with changes in circulating adipokine and incretin levels in HFD-fed mice. Some gut microbiota family alterations could be reproduced by supplementing 2-AG or MAGs in culturomics experiments carried out with WT mouse fecal samples. We suggest that the altered microbiome of Mgll-/- mice contributes to their obesity resistant phenotype, and results in part from increased levels of 2-AG and MAGs.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Monoacylglycerol Lipases/genetics , Adipokines/blood , Animals , Feces/microbiology , Glucose Tolerance Test , Incretins/blood , Insulin Resistance , Lactobacillaceae/genetics , Lactobacillaceae/isolation & purification , Mice , Mice, Inbred C57BL , Mice, Knockout , Monoacylglycerol Lipases/deficiency , Monoacylglycerol Lipases/metabolism , Obesity/microbiology , Obesity/pathology , Principal Component Analysis , Ruminococcus/genetics , Ruminococcus/isolation & purification
13.
Front Pharmacol ; 11: 585096, 2020.
Article in English | MEDLINE | ID: mdl-33162890

ABSTRACT

Inflammatory bowel disorders can be associated with alterations in gut microbiota (dysbiosis) and behavioral disturbances. In experimental colitis, administration of fish oil (FO) or cannabinoids, such as cannabidiol (CBD), reduce inflammation. We investigated the effect of combined FO/CBD administration on inflammation and dysbiosis in the dextran sulphate sodium (DSS) model of mouse colitis, which also causes behavioral disturbances. Colitis was induced in CD1 mice by 4% w/v DSS in drinking water for five consecutive days followed by normal drinking water. FO (20-75 mg/mouse) was administered once a day starting two days after DSS, whereas CBD (0.3-30 mg/kg), alone or after FO administration, was administered once a day starting 3 days after DSS, until day 8 (d8) or day 14 (d14). Inflammation was assessed at d8 and d14 (resolution phase; RP) by measuring the Disease Activity Index (DAI) score, change in body weight, colon weight/length ratio, myeloperoxidase activity and colonic interleukin (IL)-1ß (IL-1ß), IL-10, and IL-6 concentrations. Intestinal permeability was measured with the fluorescein isothiocyanate-dextran. Behavioral tests (novel object recognition (NOR) and light/dark box test) were performed at d8. Fecal microbiota composition was determined by ribosomal 16S DNA sequencing of faecal pellets at d8 and d14. DSS-induced inflammation was stronger at d8 and accompanied by anxiety-like behavior and impaired recognition memory. FO (35, 50, 75 mg/mouse) alone reduced inflammation at d8, whereas CBD alone produced no effect at any of the doses tested; however, when CBD (3, 10 mg/kg) was co-administered with FO (75 mg/mouse) inflammation was attenuated. FO (20 mg/mouse) and CBD (1 mg/kg) were ineffective when given alone, but when co-administered reduced all inflammatory markers and the increased intestinal permeability at both d8 and d14, but not the behavioral impairments. FO, CBD, and their combination affected gut bacteria taxa that were not affected by DSS per se. Akkermansia muciniphila, a species suggested to afford anti-inflammatory action in colitis, was increased by DSS only at d14, but its levels were significantly elevated by all treatments at d8. FO and CBD co-administered at per se ineffective doses reduce colon inflammation, in a manner potentially strengthened by their independent elevation of Akkermansia muciniphila.

14.
Sci Rep ; 10(1): 15975, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994521

ABSTRACT

The endocannabinoidome encompasses several fatty acid (FA)-derived mediators, including the endocannabinoid anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), which served as targets for anti-obesity drug development, and their congener N-acyl-ethanolamines (NAEs) and 2-monoacyl-glycerols (2­MAGs), which are involved in food intake and energy metabolism. Body weight and fat distribution have been suggested as determinants of peripheral endocannabinoid levels. We aimed at investigating factors, beyond body fat composition, that are associated with circulating NAE and 2-MAG levels in a heterogeneous human population. Plasma NAEs and 2-MAGs were measured using LC-MS/MS in a cross-sectional sample of healthy men and women (n = 195) covering a wide range of BMI and individuals before and after a 2-day Mediterranean diet (n = 21). Circulating levels of all 2-MAGs and NAEs, other than N-oleoyl-ethanolamine (OEA), correlated with body fat mass and visceral adipose tissue (0.26 < r < 0.54). NAE levels were elevated in individuals with elevated fat mass, while 2-MAGs were increased in individuals with predominantly visceral body fat distribution. Dietary intakes of specific FAs were associated with 2-AG and omega-3-FA-derived NAEs or 2-MAGs, irrespective of the body fat distribution. Some gut bacterial families (e.g. Veillonellaceae, Peptostreptococcaceae and Akkermansiaceae) were associated with variations in most NAEs or omega-3-FA-derived 2­MAGs, independently of fat mass and dietary FA intake. Finally, a 2-day Mediterranean diet intervention increased circulating levels of NAEs and 2-MAGs in agreement with changes in FA intake (p < 0.01). Self-reported intake and short-term dietary intervention increased in oleic acid and EPA and DHA intake as well as certain gut microbiota taxa are associated to circulating NAEs and 2­MAGs independently of adiposity measures, thus highlighting the potential importance of these variables in determining endocannabinoidome signaling in humans.


Subject(s)
Arachidonic Acids/blood , Bacteria/classification , Diet, Mediterranean , Dietary Fats/administration & dosage , Endocannabinoids/blood , Fatty Acids/administration & dosage , Glycerides/blood , Polyunsaturated Alkamides/blood , Adult , Aged , Aged, 80 and over , Bacteria/genetics , Bacteria/isolation & purification , Body Fat Distribution , Chromatography, Liquid , Cross-Sectional Studies , Dietary Fats/pharmacology , Energy Metabolism , Fatty Acids/pharmacology , Female , Gastrointestinal Microbiome/drug effects , Healthy Volunteers , Humans , Male , Middle Aged , Phylogeny , Tandem Mass Spectrometry , Young Adult
15.
J Lipid Res ; 61(1): 70-85, 2020 01.
Article in English | MEDLINE | ID: mdl-31690638

ABSTRACT

The gut microbiota is a unique ecosystem of microorganisms interacting with the host through several biochemical mechanisms. The endocannabinoidome (eCBome), a complex signaling system including the endocannabinoid system, approximately 50 receptors and metabolic enzymes, and more than 20 lipid mediators with important physiopathologic functions, modulates gastrointestinal tract function and may mediate host cell-microbe communications there. Germ-free (GF) mice, which lack an intestinal microbiome and so differ drastically from conventionally raised (CR) mice, offer a unique opportunity to explore the eCBome in a microbe-free model and in the presence of a reintroduced functional gut microbiome through fecal microbiota transplant (FMT). We aimed to gain direct evidence for a link between the microbiome and eCBome systems by investigating eCBome alterations in the gut in GF mice before and after FMT. Basal eCBome gene expression and lipid profiles were measured in various segments of the intestine of GF and CR mice at juvenile and adult ages using targeted quantitative PCR transcriptomics and LC-MS/MS lipidomics. GF mice exhibited age-dependent modifications in intestinal eCBome gene expression and lipid mediator levels. FMT from CR donor mice to age-matched GF male mice reversed several of these alterations, particularly in the ileum and jejunum, after only 1 week, demonstrating that the gut microbiome directly impacts the host eCBome and providing a cause-effect relationship between the presence or absence of intestinal microbes and eCBome signaling. These results open the way to new studies investigating the mechanisms through which intestinal microorganisms exploit eCBome signaling to exert some of their physiopathologic functions.


Subject(s)
Endocannabinoids/metabolism , Gastrointestinal Microbiome , Intestines/chemistry , Intestines/microbiology , Signal Transduction , Animals , Male , Mice , Mice, Inbred C57BL
16.
mSystems ; 4(6)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31848310

ABSTRACT

The intestinal microbiota and the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), have both been implicated in diet-induced obesity and dysmetabolism. These systems were recently suggested to interact during the development of obesity. We aimed at identifying the potential interactions between gut microbiota composition and the eCBome during the establishment of diet-induced obesity and metabolic complications. Male mice were fed a high-fat, high-sucrose (HFHS) diet for 56 days to assess jejunum, ileum, and cecum microbiomes by 16S rRNA gene metataxonomics as well as ileum and plasma eCBome by targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). The HFHS diet induced early (3 days) and persistent glucose intolerance followed by weight gain and hyperinsulinemia. Concomitantly, it induced the elevation of the two eCBs, anandamide, in both ileum and plasma, and 2-arachidonoyl-glycerol, in plasma, as well as alterations in several other N-acylethanolamines and 2-acylglycerols. It also promoted segment-specific changes in the relative abundance of several genera in intestinal microbiota, some of which were observed as early as 3 days following HFHS diet. Weight-independent correlations were found between the relative abundances of, among others, Barnesiella, Eubacterium, Adlercreutzia, Parasutterella, Propionibacterium, Enterococcus, and Methylobacterium and the concentrations of anandamide and the anti-inflammatory eCBome mediator N-docosahexaenoyl-ethanolamine. This study highlights for the first time the existence of potential interactions between the eCBome, an endogenous system of multifunctional signaling lipids, and several intestinal genera during early and late HFHS-induced dysmetabolic events, with potential impact on the host capability of adapting to increased intake of fat and sucrose.IMPORTANCE The intestinal microbiota and the expanded endocannabinoid system, or endocannabinoidome, have both been implicated in diet-induced obesity and dysmetabolism. This study aims at identifying the potential interactions between these two fundamental systems-which form the gut microbiota-endocannabinoidome axis-and their involvement in the establishment of diet-induced obesity and related metabolic complications. We report here time- and segment-specific microbiome disturbances as well as modifications of intestinal and circulating endocannabinoidome mediators during high-fat, high-sucrose diet-induced glucose intolerance and subsequent obesity and hyperinsulinemia. This highlights the involvement of, and the interaction between, the gut microbiota and the endocannabinoidome during metabolic adaptation to high-fat and high-sucrose feeding. These results will help identifying actionable gut microbiome members and/or endocannabinoidome mediators to improve metabolic health.

17.
Sci Rep ; 8(1): 2232, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396566

ABSTRACT

Polyphenol-rich foods are part of many nutritional interventions aimed at improving health and preventing cardiometabolic diseases (CMDs). Polyphenols have oxidative, inflammatory, and/or metabolic effects. Research into the chemistry and biology of polyphenol bioactives is prolific but knowledge of their molecular interactions with proteins is limited. We mined public data to (i) identify proteins that interact with or metabolize polyphenols, (ii) mapped these proteins to pathways and networks, and (iii) annotated functions enriched within the resulting polyphenol-protein interactome. A total of 1,395 polyphenols and their metabolites were retrieved (using Phenol-Explorer and Dictionary of Natural Products) of which 369 polyphenols interacted with 5,699 unique proteins in 11,987 interactions as annotated in STITCH, Pathway Commons, and BindingDB. Pathway enrichment analysis using the KEGG repository identified a broad coverage of significant pathways of low specificity to particular polyphenol (sub)classes. When compared to drugs or micronutrients, polyphenols have pleiotropic effects across many biological processes related to metabolism and CMDs. These systems-wide effects were also found in the protein interactome of the polyphenol-rich citrus fruits, used as a case study. In sum, these findings provide a knowledgebase for identifying polyphenol classes (and polyphenol-rich foods) that individually or in combination influence metabolism.


Subject(s)
Databases, Factual , Plant Preparations/metabolism , Polyphenols/metabolism , Proteins/metabolism , Humans , Plants/chemistry , Protein Interaction Mapping
18.
Mol Nutr Food Res ; 62(6): e1700613, 2018 03.
Article in English | MEDLINE | ID: mdl-29368422

ABSTRACT

SCOPE: Micronutrients are in small amounts in foods, act in concert, and require variable amounts of time to see changes in health and risk for disease. These first principles are incorporated into an intervention study designed to develop new experimental strategies for setting target recommendations for food bioactives for populations and individuals. METHODS AND RESULTS: A 6-week multivitamin/mineral intervention is conducted in 9-13 year olds. Participants (136) are (i) their own control (n-of-1); (ii) monitored for compliance; (iii) measured for 36 circulating vitamin forms, 30 clinical, anthropometric, and food intake parameters at baseline, post intervention, and following a 6-week washout; and (iv) had their ancestry accounted for as modifier of vitamin baseline or response. The same intervention is repeated the following year (135 participants). Most vitamins respond positively and many clinical parameters change in directions consistent with improved metabolic health to the intervention. Baseline levels of any metabolite predict its own response to the intervention. Elastic net penalized regression models are identified, and significantly predict response to intervention on the basis of multiple vitamin/clinical baseline measures. CONCLUSIONS: The study design, computational methods, and results are a step toward developing recommendations for optimizing vitamin levels and health parameters for individuals.


Subject(s)
Micronutrients/administration & dosage , Vitamins/blood , Adolescent , Child , Dyslipidemias/blood , Feeding Behavior , Female , Humans , Individuality , Male
19.
J Nutr Metab ; 2017: 4535710, 2017.
Article in English | MEDLINE | ID: mdl-29225968

ABSTRACT

INTRODUCTION: The domesticated dog, Canis lupus familiaris, has been selectively bred to produce extreme diversity in phenotype and genotype. Dogs have an immense diversity in weight and height. Specific differences in metabolism have not been characterized in small dogs as compared to larger dogs. OBJECTIVES: This study aims to identify metabolic, clinical, and microbiota differences between small and larger dogs. METHODS: Gas chromatography/mass spectrometry, liquid chromatography/tandem mass spectrometry, clinical chemistry analysis, dual-energy X-ray absorptiometry, and 16S pyrosequencing were used to characterize blood metabolic, clinical, and fecal microbiome systems, respectively. Eighty-three canines from seven different breeds, fed the same kibble diet for 5 weeks, were used in the study. RESULTS: 449 metabolites, 16 clinical parameters, and 6 bacteria (at the genus level) were significantly different between small and larger dogs. Hierarchical clustering of the metabolites yielded 8 modules associated with small dog size. CONCLUSION: Small dogs had a lower antioxidant status and differences in circulating amino acids. Some of the amino acid differences could be attributed to differences in microflora. Additionally, analysis of small dog metabolites and clinical parameters reflected a network which strongly associates with kidney function.

20.
Genes Nutr ; 12: 28, 2017.
Article in English | MEDLINE | ID: mdl-29043008

ABSTRACT

BACKGROUND: During evolution, humans colonized different ecological niches and adopted a variety of subsistence strategies that gave rise to diverse selective pressures acting across the genome. Environmentally induced selection of vitamin, mineral, or other cofactor transporters could influence micronutrient-requiring molecular reactions and contribute to inter-individual variability in response to foods and nutritional interventions. METHODS: A comprehensive list of genes coding for transporters of cofactors or their precursors was built using data mining procedures from the HGDP dataset and then explored to detect evidence of positive genetic selection. This dataset was chosen since it comprises several genetically diverse worldwide populations whom ancestries have evolved in different environments and thus lived following various nutritional habits and lifestyles. RESULTS: We identified 312 cofactor transporter (CT) genes involved in between-cell or sub-cellular compartment distribution of 28 cofactors derived from dietary intake. Twenty-four SNPs distributed across 14 CT genes separated populations into continental and intra-continental groups such as African hunter-gatherers and farmers, and between Native American sub-populations. Notably, four SNPs were located in SLC24A3 with one being a known eQTL of the NCKX3 protein. CONCLUSIONS: These findings could support the importance of considering individual's genetic makeup along with their metabolic profile when tailoring personalized dietary interventions for optimizing health.

SELECTION OF CITATIONS
SEARCH DETAIL
...