Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Type of study
Language
Publication year range
1.
Sci Total Environ ; 865: 161136, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36587699

ABSTRACT

The implementation of a sustainable bio-based economy is considered a top priority today. There is no doubt about the necessity to produce renewable bioenergy and bio-sourced chemicals to replace fossil-derived compounds. Under this scenario, strong efforts have been devoted to efficiently use organic waste as feedstock for biohydrogen production via dark fermentation. However, the technoeconomic viability of this process needs to be enhanced by the valorization of the residual streams generated. The use of dark fermentation effluents as low-cost carbon source for microalgae cultivation arises as an innovative approach for bioproducts generation (e.g., biodiesel, bioactive compounds, pigments) that maximizes the carbon recovery. In a biorefinery context, after value-added product extraction, the spent microalgae biomass can be further valorised as feedstock for biohydrogen production. This integrated process would play a key role in the transition towards a circular economy. This review covers recent advances in microalgal cultivation on dark fermentation effluents (DFE). BioH2 via dark fermentation processes and the involved metabolic pathways are detailed with a special focus on the main aspects affecting the effluent composition. Interesting traits of microalgae and current approaches to solve the challenges associated to the integration of dark fermentation and microalgae cultivation are also discussed.


Subject(s)
Microalgae , Fermentation , Biofuels , Biomass , Carbon
2.
Front Microbiol ; 13: 1029828, 2022.
Article in English | MEDLINE | ID: mdl-36353459

ABSTRACT

Volatile fatty acids found in effluents of the dark fermentation of biowastes can be used for mixotrophic growth of microalgae, improving productivity and reducing the cost of the feedstock. Microalgae can use the acetate in the effluents very well, but butyrate is poorly assimilated and can inhibit growth above 1 gC.L-1. The non-photosynthetic chlorophyte alga Polytomella sp. SAG 198.80 was found to be able to assimilate butyrate fast. To decipher the metabolic pathways implicated in butyrate assimilation, quantitative proteomics study was developed comparing Polytomella sp. cells grown on acetate and butyrate at 1 gC.L-1. After statistical analysis, a total of 1772 proteins were retained, of which 119 proteins were found to be overaccumulated on butyrate vs. only 46 on acetate, indicating that butyrate assimilation necessitates additional metabolic steps. The data show that butyrate assimilation occurs in the peroxisome via the ß-oxidation pathway to produce acetyl-CoA and further tri/dicarboxylic acids in the glyoxylate cycle. Concomitantly, reactive oxygen species defense enzymes as well as the branched amino acid degradation pathway were strongly induced. Although no clear dedicated butyrate transport mechanism could be inferred, several membrane transporters induced on butyrate are identified as potential condidates. Metabolic responses correspond globally to the increased needs for central cofactors NAD, ATP and CoA, especially in the peroxisome and the cytosol.

3.
Front Microbiol ; 12: 703614, 2021.
Article in English | MEDLINE | ID: mdl-34276636

ABSTRACT

Microalgae can be cultivated on waste dark fermentation effluents containing volatile fatty acids (VFA) such as acetate or butyrate. These VFA can however inhibit microalgae growth at concentrations above 0.5-1 gC.L-1. This study used the model strain Chlorella sorokiniana to investigate the effects of acetate or butyrate concentration on biomass growth rates and yields alongside C:N:P ratios and pH control. Decreasing undissociated acid levels by raising the initial pH to 8.0 allowed growth without inhibition up to 5 gC.L-1 VFAs. However, VFA concentration strongly affected biomass yields irrespective of pH control or C:N:P ratios. Biomass yields on 1.0 gC.L-1 acetate were around 1.3-1.5 gC.gC -1 but decreased by 26-48% when increasing initial acetate to 2.0 gC.L-1. This was also observed for butyrate with yields decreasing up to 25%. This decrease in yield in suggested to be due to the prevalence of heterotrophic metabolism at high organic acid concentration, which reduced the amount of carbon fixed by autotrophy. Finally, the effects of C:N:P on biomass, lipids and carbohydrates production dynamics were assessed using a mixture of both substrates. In nutrient replete conditions, C. sorokiniana accumulated up to 20.5% carbohydrates and 16.4% lipids while nutrient limitation triggered carbohydrates accumulation up to 45.3%.

SELECTION OF CITATIONS
SEARCH DETAIL
...