Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Neurology ; 103(1): e209501, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38870452

ABSTRACT

BACKGROUND AND OBJECTIVES: Generalized convulsive seizures (GCSs) are the main risk factor of sudden unexpected death in epilepsy (SUDEP), which is likely due to peri-ictal cardiorespiratory dysfunction. The incidence of GCS-induced cardiac arrhythmias, their relationship to seizure severity markers, and their role in SUDEP physiopathology are unknown. The aim of this study was to analyze the incidence of seizure-induced cardiac arrhythmias, their association with electroclinical features and seizure severity biomarkers, as well as their specific occurrences in SUDEP cases. METHODS: This is an observational, prospective, multicenter study of patients with epilepsy aged 18 years and older with recorded GCS during inpatient video-EEG monitoring for epilepsy evaluation. Exclusion criteria were status epilepticus and an obscured video recording. We analyzed semiologic and cardiorespiratory features through video-EEG (VEEG), electrocardiogram, thoracoabdominal bands, and pulse oximetry. We investigated the presence of bradycardia, asystole, supraventricular tachyarrhythmias (SVTs), premature atrial beats, premature ventricular beats, nonsustained ventricular tachycardia (NSVT), atrial fibrillation (Afib), ventricular fibrillation (VF), atrioventricular block (AVB), exaggerated sinus arrhythmia (ESA), and exaggerated sinus arrhythmia with bradycardia (ESAWB). A board-certified cardiac electrophysiologist diagnosed and classified the arrhythmia types. Bradycardia, asystole, SVT, NSVT, Afib, VF, AVB, and ESAWB were classified as arrhythmias of interest because these were of SUDEP pathophysiology value. The main outcome was the occurrence of seizure-induced arrhythmias of interest during inpatient VEEG monitoring. Moreover, yearly follow-up was conducted to identify SUDEP cases. Binary logistic generalized estimating equations were used to determine clinical-demographic and peri-ictal variables that were predictive of the presence of seizure-induced arrhythmias of interest. The z-score test for 2 population proportions was used to test whether the proportion of seizures and patients with postconvulsive ESAWB or bradycardia differed between SUDEP cases and survivors. RESULTS: This study includes data from 249 patients (mean age 37.2 ± 23.5 years, 55% female) who had 455 seizures. The most common arrhythmia was ESA, with an incidence of 137 of 382 seizures (35.9%) (106/224 patients [47.3%]). There were 50 of 352 seizure-induced arrhythmias of interest (14.2%) in 41 of 204 patients (20.1%). ESAWB was the commonest in 22 of 394 seizures (5.6%) (18/225 patients [8%]), followed by SVT in 18 of 397 seizures (4.5%) (17/228 patients [7.5%]). During follow-up (48.36 ± 31.34 months), 8 SUDEPs occurred. Seizure-induced bradycardia (3.8% vs 12.5%, z = -16.66, p < 0.01) and ESAWB (6.6% vs 25%; z = -3.03, p < 0.01) were over-represented in patients who later died of SUDEP. There was no association between arrhythmias of interest and seizure severity biomarkers (p > 0.05). DISCUSSION: Markers of seizure severity are not related to seizure-induced arrhythmias of interest, suggesting that other factors such as occult cardiac abnormalities may be relevant for their occurrence. Seizure-induced ESAWB and bradycardia were more frequent in SUDEP cases, although this observation was based on a very limited number of SUDEP patients. Further case-control studies are needed to evaluate the yield of arrhythmias of interest along with respiratory changes as potential SUDEP biomarkers.


Subject(s)
Arrhythmias, Cardiac , Electroencephalography , Humans , Female , Male , Adult , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/diagnosis , Incidence , Middle Aged , Prospective Studies , Sudden Unexpected Death in Epilepsy/epidemiology , Seizures/epidemiology , Seizures/physiopathology , Epilepsy, Generalized/epidemiology , Epilepsy, Generalized/physiopathology , Aged , Young Adult , Electrocardiography , Adolescent
2.
Ann Neurol ; 95(5): 998-1008, 2024 May.
Article in English | MEDLINE | ID: mdl-38400804

ABSTRACT

OBJECTIVE: Ictal central apnea (ICA) is a semiological sign of focal epilepsy, associated with temporal and frontal lobe seizures. In this study, using qualitative and quantitative approaches, we aimed to assess the localizational value of ICA. We also aimed to compare ICA clinical utility in relation to other seizure semiological features of focal epilepsy. METHODS: We analyzed seizures in patients with medically refractory focal epilepsy undergoing intracranial stereotactic electroencephalographic (SEEG) evaluations with simultaneous multimodal cardiorespiratory monitoring. A total of 179 seizures in 72 patients with reliable artifact-free respiratory signal were analyzed. RESULTS: ICA was seen in 55 of 179 (30.7%) seizures. Presence of ICA predicted a mesial temporal seizure onset compared to those without ICA (odds ratio = 3.8, 95% confidence interval = 1.3-11.6, p = 0.01). ICA specificity was 0.82. ICA onset was correlated with increased high-frequency broadband gamma (60-150Hz) activity in specific mesial or basal temporal regions, including amygdala, hippocampus, and fusiform and lingual gyri. Based on our results, ICA has an almost 4-fold greater association with mesial temporal seizure onset zones compared to those without ICA and is highly specific for mesial temporal seizure onset zones. As evidence of symptomatogenic areas, onset-synchronous increase in high gamma activity in mesial or basal temporal structures was seen in early onset ICA, likely representing anatomical substrates for ICA generation. INTERPRETATION: ICA recognition may help anatomoelectroclinical localization of clinical seizure onset to specific mesial and basal temporal brain regions, and the inclusion of these regions in SEEG evaluations may help accurately pinpoint seizure onset zones for resection. ANN NEUROL 2024;95:998-1008.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Male , Female , Adult , Middle Aged , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/diagnosis , Sleep Apnea, Central/physiopathology , Sleep Apnea, Central/diagnosis , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/diagnosis , Seizures/physiopathology , Seizures/diagnosis , Young Adult , Electrocorticography/methods , Electroencephalography/methods , Adolescent , Epilepsies, Partial/physiopathology , Epilepsies, Partial/diagnosis
3.
Epilepsia ; 65(3): 641-650, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38265418

ABSTRACT

OBJECTIVE: Stereo-electroencephalography (SEEG) is the preferred method for intracranial localization of the seizure-onset zone (SOZ) in drug-resistant focal epilepsy. Occasionally SEEG evaluation fails to confirm the pre-implantation hypothesis. This leads to a decision tree regarding whether the addition of SEEG electrodes (two-step SEEG - 2sSEEG) or placement of subdural electrodes (SDEs) after SEEG (SEEG2SDE) would help. There is a dearth of literature encompassing this scenario, and here we aimed to characterize outcomes following unplanned two-step intracranial EEG (iEEG). METHODS: All 225 adult SEEG cases over 8 years at our institution were reviewed to extract patient data and outcomes following a two-step evaluation. Three raters independently quantified benefits of additional intracranial electrodes. The relationship between two-step iEEG benefit and clinical outcome was then analyzed. RESULTS: Fourteen patients underwent 2sSEEG and nine underwent SEEG2SDE. In the former cohort, the second SEEG procedure was performed for these reasons-precise localization of the SOZ (36%); defining margins of eloquent cortex (21%); and broadening coverage in the setting of non-localizable seizure onsets (43% of cases). Sixty-four percent of 2sSEEG cases were consistently deemed beneficial (Light's κ = 0.80). 2sSEEG performed for the first two indications was much more beneficial than when onsets were not localizable (100% vs 17%, p = .02). In the SEEG2SDE cohort, SDEs identified the SOZ and enabled delineation of margins relative to eloquent cortex in all cases. SIGNIFICANCE: The two-step iEEG is useful if the initial evaluation is broadly concordant with the original electroclinical hypothesis, where it can clarify onset zones or delineate safe surgical margins; however, it provides minimal benefit when the implantation hypothesis is erroneous, and we recommend that 2sSEEG not be generally utilized in such cases. SDE implantation after SEEG minimizes the need for SDEs and is helpful in delineating surgical boundaries relative to ictal-onset zones and eloquent cortex.


Subject(s)
Drug Resistant Epilepsy , Electroencephalography , Adult , Humans , Electrodes, Implanted , Electroencephalography/methods , Electrocorticography/methods , Stereotaxic Techniques , Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/surgery , Seizures/surgery , Retrospective Studies
4.
Epilepsia ; 64(7): 1925-1938, 2023 07.
Article in English | MEDLINE | ID: mdl-37119434

ABSTRACT

OBJECTIVE: We aimed to identify corticothalamic areas and electrical stimulation paradigms that optimally enhance breathing. METHODS: Twenty-nine patients with medically intractable epilepsy were prospectively recruited in an epilepsy monitoring unit while undergoing stereoelectroencephalographic evaluation. Direct electrical stimulation in cortical and thalamic regions was carried out using low (<1 Hz) and high (≥10 Hz) frequencies, and low (<5 mA) and high (≥5 mA) current intensities, with pulse width of .1 ms. Electrocardiography, arterial oxygen saturation (SpO2 ), end-tidal carbon dioxide (ETCO2 ), oronasal airflow, and abdominal and thoracic plethysmography were monitored continuously during stimulations. Airflow signal was used to estimate breathing rate, tidal volume, and minute ventilation (MV) changes during stimulation, compared to baseline. RESULTS: Electrical stimulation increased MV in the amygdala, anterior cingulate, anterior insula, temporal pole, and thalamus, with an average increase in MV of 20.8% ± 28.9% (range = 0.2%-165.6%) in 19 patients. MV changes were associated with SpO2 and ETCO2 changes (p < .001). Effects on respiration were parameter and site dependent. Within amygdala, low-frequency stimulation of the medial region produced 78.49% greater MV change (p < .001) compared to high-frequency stimulation. Longer stimulation produced greater MV changes (an increase of 4.47% in MV for every additional 10 s, p = .04). SIGNIFICANCE: Stimulation of amygdala, anterior cingulate gyrus, anterior insula, temporal pole, and thalamus, using certain stimulation paradigms, enhances respiration. Among tested paradigms, low-frequency, low-intensity, long-duration stimulation of the medial amygdala is the most effective breathing enhancement stimulation strategy. Such approaches may pave the way for the future development of neuromodulatory techniques that aid rescue from seizure-related apnea, potentially as a targeted sudden unexpected death in epilepsy prevention method.


Subject(s)
Electrocorticography , Epilepsy , Respiratory Rate , Respiration , Respiratory Rate/physiology , Amygdala , Temporal Lobe , Thalamus , Prospective Studies
5.
J Neurosurg ; 139(1): 229-237, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36585867

ABSTRACT

OBJECTIVE: Stereoelectroencephalography (SEEG) is designed to target distributed cortical networks responsible for electroclinical seizure syndrome and to enable localization of the site of seizure onset in patients with intractable epilepsy. When the preimplantation hypothesis invokes the bilateral mesial frontal lobes, sampling of several deep-seated cortical sites in both hemispheres is required. In this study, the authors have demonstrated the feasibility of sampling bihemispheric areas with intentional implantation of an SEEG electrode crossing the midline (SECM) for sampling the cortex on both sides of the interhemispheric fissure. METHODS: An analysis of 231 consecutive SEEG procedures over 8 years was used to identify instances of bihemispheric sampling by using the transmidline SEEG technique. RESULTS: The authors identified 53 SEEG cases, with a total of 126 electrodes that crossed the interhemispheric fissure; all were in the frontal lobes. Eighty-three electrodes targeted the cingulate gyrus (18 rostral, 43 anterior, and 22 middle), 31 targeted the posterior orbitofrontal region, 8 sampled the medial prefrontal cortex, and 4 targeted nodular heterotopia around the frontal horns. The ictal onset zone was localized to the frontal lobe in 16 cases. SECM isolated interictal and ictal activity in the contralateral hemisphere in 6 cases and independent bihemispheric seizure activity in 2 cases. No hemorrhagic or infectious complications were noted in any of these cases. CONCLUSIONS: Based on this extensive experience of bihemispheric sampling, the authors concluded that this technique is safe and effective. In this series, SECM showed contralateral interictal and/or ictal epileptiform activity in 8 (15%) cases, and 9 (16%) cases (with unilateral implantation) had sufficient data to discard contralateral involvement, contributing to support of the epileptogenic network. SECM may reduce the number of electrodes used to sample bilateral mesial frontal or orbitofrontal cortices, and such an approach may lower the risk of hemorrhage and costs.


Subject(s)
Electroencephalography , Epilepsy , Humans , Electroencephalography/methods , Stereotaxic Techniques , Epilepsy/surgery , Electrodes, Implanted , Seizures/surgery
6.
Epilepsy Res ; 185: 106990, 2022 09.
Article in English | MEDLINE | ID: mdl-35930940

ABSTRACT

Multimodal polygraphy including cardiorespiratory monitoring in the Epilepsy Monitoring is becoming increasingly important. In addition to simultaneous recording of video and EEG, the combination of these techniques not only improves seizure detection, it enhances patient safety and provides information on autonomic clinical symptoms, which may be contributory to localization of seizure foci. However, there are currently no consensus guidelines, nor adequate information on devices available for multimodal polygraphy for cardiorespiratory monitoring in the Epilepsy Monitoring Unit. Our purpose here is to provide protocols and information on devices for such monitoring. Suggested parameters include respiratory inductance plethysmography (thoraco-abdominal belts for respiratory rate), pulse oximetry and four-lead electrocardiography. Detailed knowledge of devices, their operability and acquisition optimization enables accurate interpretation of signal and differentiation of abnormalities from artifacts. Multimodal polygraphy brings new opportunities for identification of peri-ictal cardiorespiratory abnormalities, and may identify high SUDEP risk individuals.


Subject(s)
Death, Sudden , Epilepsy , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Monitoring, Physiologic/methods , Seizures
7.
Front Neurol ; 13: 896204, 2022.
Article in English | MEDLINE | ID: mdl-35873766

ABSTRACT

Objectives: Sudden unexpected death in epilepsy (SUDEP) is a catastrophic epilepsy outcome for which there are no reliable premortem imaging biomarkers of risk. Percival respiratory depression is seen in monitored SUDEP and near SUDEP cases, and abnormal chemosensing of raised blood carbon dioxide (CO2) is thought to contribute. Damage to brainstem respiratory control and chemosensing structures has been demonstrated in structural imaging and neuropathological studies of SUDEP. We hypothesized that functional MRI (fMRI) correlates of abnormal chemosensing are detectable in brainstems of persons with epilepsy (PWE) and are different from healthy controls (HC). Methods: We analyzed fMRI BOLD activation and brain connectivity in 10 PWE and 10 age- and sex-matched HCs during precisely metered iso-oxic, hypercapnic breathing challenges. Segmented brainstem responses were of particular interest, along with characterization of functional connectivity metrics between these structures. Regional BOLD activations during hypercapnic challenges were convolved with hemodynamic responses, and the resulting activation maps were passed on to group-level analyses. For the functional connectivity analysis, significant clusters from BOLD results were used as seeds. Each individual seed time-series activation map was extracted for bivariate correlation coefficient analyses to study changes in brain connectivity between PWE and HCs. Results: (1) Greater brainstem BOLD activations in PWE were observed compared to HC during hypercapnic challenges in several structures with respiratory/chemosensing properties. Group comparison between PWE vs. HC showed significantly greater activation in the dorsal raphe among PWE (p < 0.05) compared to HCs. (2) PWE had significantly greater seed-seed connectivity and recruited more structures during hypercapnia compared to HC. Significance: The results of this study show that BOLD responses to hypercapnia in human brainstem are detectable and different in PWE compared to HC. Increased dorsal raphe BOLD activation in PWE and increased seed-seed connectivity between brainstem and adjacent subcortical areas may indicate abnormal chemosensing in these individuals. Imaging investigation of brainstem respiratory centers involved in respiratory regulation in PWE is an important step toward identifying suspected dysfunction of brainstem breathing control that culminates in SUDEP and deserve further study as potential imaging SUDEP biomarkers.

8.
Epilepsy Res ; 185: 106987, 2022 09.
Article in English | MEDLINE | ID: mdl-35843018

ABSTRACT

Multimodal polygraphy including cardiorespiratory monitoring is a valuable tool for epilepsy and sudden unexpected death in epilepsy (SUDEP) research. Broader applications in research into stress, anxiety, mood and other domains exist. Polygraphy techniques used during video electroencephalogram (EEG) recordings provide information on cardiac and respiratory changes in the peri-ictal period. In addition, such monitoring in brain mapping during chronic intracranial EEG evaluations has helped the understanding of pathomechanisms that lead to seizure induced cardiorespiratory dysfunction. Our aim here is to provide protocols and information on devices that may be used in the Epilepsy Monitoring Unit, in addition to proposed standard of care data acquisition. These devices include oronasal thermistors, oronasal pressure transducers, capnography, transcutaneous CO2 sensors, and continuous noninvasive blood pressure monitoring. Standard protocols for cardiorespiratory monitoring simultaneously with video EEG recording, may be useful in the study of cardiorespiratory phenomena in persons with epilepsy.


Subject(s)
Epilepsy , Brain Mapping , Electroencephalography/methods , Epilepsy/complications , Epilepsy/diagnosis , Humans , Monitoring, Physiologic/methods , Seizures
9.
Epilepsia ; 63(7): 1799-1811, 2022 07.
Article in English | MEDLINE | ID: mdl-35352347

ABSTRACT

OBJECTIVE: Increased understanding of the role of cortical structures in respiratory control may help the understanding of seizure-induced respiratory dysfunction that leads to sudden unexpected death in epilepsy (SUDEP). The aim of this study was to characterize respiratory responses to electrical stimulation (ES), including inhibition and enhancement of respiration. METHODS: We prospectively recruited 19 consecutive patients with intractable epilepsy undergoing stereotactic electroencephalography (EEG) evaluation from June 2015 to June 2018. Inclusion criteria were patients ≥18 years in whom ES was indicated for clinical mapping of ictal onset or eloquent cortex as part of the presurgical evaluation. ES was carried out at 50 Hz, 0.2 msec, and 1-10 mA current intensity. Common brain regions sampled across all patients were amygdala (AMY), hippocampus (HG), anterior cingulate gyrus (CING), orbitofrontal cortex (OrbF), temporal neocortex (TNC), temporal pole (TP), and entorhinal cortex (ERC). Seven hundred fifty-five stimulations were conducted. Quantitative analysis of breathing signal, that is, changes in breathing rate (BR), depth (TV), and minute ventilation (MV), was carried out during ES using the BreathMetrics breathing waveform analysis toolbox. Electrocardiography, arterial oxygen saturation, end-tidal and transcutaneous carbon dioxide, nasal airflow, and abdominal and thoracic plethysmography were monitored continuously during stimulations. RESULTS: Electrical stimulation of TP and CING (at lower current strengths <3 mA) increased TV and MV. At >7-10 mA, CING decreased TV and MV. On the other hand, decreased TV and MV occurred with stimulation of mesial temporal structures such as AMY and HG. Breathing changes were dependent on stimulation intensity. Lateral temporal, entorhinal, and orbitofrontal cortices did not affect breathing either way. SIGNIFICANCE: These findings suggest that breathing responses other than apnea can be induced by ES. Identification of two regions-the temporal pole and anterior cingulate gyrus-for enhancement of breathing may be important in paving the way to future development of strategies for prevention of SUDEP.


Subject(s)
Neocortex , Sudden Unexpected Death in Epilepsy , Amygdala , Electroencephalography , Humans , Temporal Lobe
10.
Epileptic Disord ; 23(5): 682-694, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34519649

ABSTRACT

For the treatment of mesial temporal lobe epilepsy on the language-dominant side in patients at high risk of memory decline, we propose a minimally invasive diagnostic and treatment technique, adopting the principles of multiple hippocampal transections (MHT) using stereo-electroencephalography-guided radiofrequency (SEEG-guided-RF-MHT). This new technique allows targeting of the longitudinal fibers in the hippocampus critical for seizure spreading, while sparing the transverse circuits which are considered important for memory processing and avoiding discomfort and longer post-operatory recovery time associated with craniotomies. We report the efficacy and safety of this procedure in a preliminary observational study of cases. Five patients at high risk of memory decline, including three with non-lesional hippocampi on MRI, had temporal lobe epilepsy (TLE) necessitating depth electrode implantation. A new strategy of SEEG electrode placement was used to mimic MHT. After confirming hippocampal seizure onset, all the patients had three linear ablations perpendicular to the amigdalohippocampal complex. The procedure was performed at the patient's bedside with the patient awake during the full length of the procedure. Four out of five patients were seizure-free (average follow up: 14-18 months). There were no associated complications. Visual inspection of brain MRI of patients at six months following SEEG-guided RF-MHT showed significant hippocampal volume preservation. Subjects who received the procedure in the dominant side reported no subjective memory complaints in the follow-up clinic assessments at six months. Our preliminary seizure outcome seems very promising since the majority of our patients (four out of five patients) were seizure-free. Since no lesions are made outside the amygdalo-hippocampal complex using this technique and the temporal stem remains intact, more favorable memory and language outcome is expected in patients at high risk of memory decline.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Electroencephalography , Epilepsy, Temporal Lobe/surgery , Hippocampus/surgery , Magnetic Resonance Imaging , Memory Disorders , Seizures , Treatment Outcome
11.
Front Neurol ; 12: 669517, 2021.
Article in English | MEDLINE | ID: mdl-34046007

ABSTRACT

Rationale: Currently, there is some ambiguity over the role of postictal generalized electro-encephalographic suppression (PGES) as a biomarker in sudden unexpected death in epilepsy (SUDEP). Visual analysis of PGES, known to be subjective, may account for this. In this study, we set out to perform an analysis of PGES presence and duration using a validated signal processing tool, specifically to examine the association between PGES and seizure features previously reported to be associated with visually analyzed PGES. Methods: This is a prospective, multicenter epilepsy monitoring study of autonomic and breathing biomarkers of SUDEP in adult patients with intractable epilepsy. We studied videoelectroencephalogram (vEEG) recordings of generalized convulsive seizures (GCS) in a cohort of patients in whom respiratory and vEEG recording were carried out during the evaluation in the epilepsy monitoring unit. A validated automated EEG suppression detection tool was used to determine presence and duration of PGES. Results: We studied 148 GCS in 87 patients. PGES occurred in 106/148 (71.6%) seizures in 70/87 (80.5%) of patients. PGES mean duration was 38.7 ± 23.7 (37; 1-169) seconds. Presence of tonic phase during GCS, including decerebration, decortication and hemi-decerebration, were 8.29 (CI 2.6-26.39, p = 0.0003), 7.17 (CI 1.29-39.76, p = 0.02), and 4.77 (CI 1.25-18.20, p = 0.02) times more likely to have PGES, respectively. In addition, presence of decerebration (p = 0.004) and decortication (p = 0.02), older age (p = 0.009), and hypoxemia duration (p = 0.03) were associated with longer PGES durations. Conclusions: In this study, we confirmed observations made with visual analysis, that presence of tonic phase during GCS, longer hypoxemia, and older age are reliably associated with PGES. We found that of the different types of tonic phase posturing, decerebration has the strongest association with PGES, followed by decortication, followed by hemi-decerebration. This suggests that these factors are likely indicative of seizure severity and may or may not be associated with SUDEP. An automated signal processing tool enables objective metrics, and may resolve apparent ambiguities in the role of PGES in SUDEP and seizure severity studies.

12.
Front Neurol ; 12: 643916, 2021.
Article in English | MEDLINE | ID: mdl-33643216

ABSTRACT

Rationale: Seizure clusters may be related to Sudden Unexpected Death in Epilepsy (SUDEP). Two or more generalized convulsive seizures (GCS) were captured during video electroencephalography in 7/11 (64%) patients with monitored SUDEP in the MORTEMUS study. It follows that seizure clusters may be associated with epilepsy severity and possibly with SUDEP risk. We aimed to determine if electroclinical seizure features worsen from seizure to seizure within a cluster and possible associations between GCS clusters, markers of seizure severity, and SUDEP risk. Methods: Patients were consecutive, prospectively consented participants with drug-resistant epilepsy from a multi-center study. Seizure clusters were defined as two or more GCS in a 24-h period during the recording of prolonged video-electroencephalography in the Epilepsy monitoring unit (EMU). We measured heart rate variability (HRV), pulse oximetry, plethysmography, postictal generalized electroencephalographic suppression (PGES), and electroencephalography (EEG) recovery duration. A linear mixed effects model was used to study the difference between the first and subsequent seizures, with a level of significance set at p < 0.05. Results: We identified 112 GCS clusters in 105 patients with 285 seizures. GCS lasted on average 48.7 ± 19 s (mean 49, range 2-137). PGES emerged in 184 (64.6%) seizures and postconvulsive central apnea (PCCA) was present in 38 (13.3%) seizures. Changes in seizure features from seizure to seizure such as seizure and convulsive phase durations appeared random. In grouped analysis, some seizure features underwent significant deterioration, whereas others improved. Clonic phase and postconvulsive central apnea (PCCA) were significantly shorter in the fourth seizure compared to the first. By contrast, duration of decerebrate posturing and ictal central apnea were longer. Four SUDEP cases in the cluster cohort were reported on follow-up. Conclusion: Seizure clusters show variable changes from seizure to seizure. Although clusters may reflect epilepsy severity, they alone may be unrelated to SUDEP risk. We suggest a stochastic nature to SUDEP occurrence, where seizure clusters may be more likely to contribute to SUDEP if an underlying progressive tendency toward SUDEP has matured toward a critical SUDEP threshold.

13.
Neurology ; 96(3): e352-e365, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33268557

ABSTRACT

OBJECTIVE: To analyze the association between peri-ictal brainstem posturing semiologies with postictal generalized electroencephalographic suppression (PGES) and breathing dysfunction in generalized convulsive seizures (GCS). METHODS: In this prospective, multicenter analysis of GCS, ictal brainstem semiology was classified as (1) decerebration (bilateral symmetric tonic arm extension), (2) decortication (bilateral symmetric tonic arm flexion only), (3) hemi-decerebration (unilateral tonic arm extension with contralateral flexion) and (4) absence of ictal tonic phase. Postictal posturing was also assessed. Respiration was monitored with thoracoabdominal belts, video, and pulse oximetry. RESULTS: Two hundred ninety-five seizures (180 patients) were analyzed. Ictal decerebration was observed in 122 of 295 (41.4%), decortication in 47 of 295 (15.9%), and hemi-decerebration in 28 of 295 (9.5%) seizures. Tonic phase was absent in 98 of 295 (33.2%) seizures. Postictal posturing occurred in 18 of 295 (6.1%) seizures. PGES risk increased with ictal decerebration (odds ratio [OR] 14.79, 95% confidence interval [CI] 6.18-35.39, p < 0.001), decortication (OR 11.26, 95% CI 2.96-42.93, p < 0.001), or hemi-decerebration (OR 48.56, 95% CI 6.07-388.78, p < 0.001). Ictal decerebration was associated with longer PGES (p = 0.011). Postictal posturing was associated with postconvulsive central apnea (PCCA) (p = 0.004), longer hypoxemia (p < 0.001), and Spo2 recovery (p = 0.035). CONCLUSIONS: Ictal brainstem semiology is associated with increased PGES risk. Ictal decerebration is associated with longer PGES. Postictal posturing is associated with a 6-fold increased risk of PCCA, longer hypoxemia, and Spo2 recovery. Peri-ictal brainstem posturing may be a surrogate biomarker for GCS severity identifiable without in-hospital monitoring. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that peri-ictal brainstem posturing is associated with the GCS with more prolonged PGES and more severe breathing dysfunction.


Subject(s)
Brain Stem/physiopathology , Epilepsy, Generalized/physiopathology , Posture/physiology , Respiration , Seizures/physiopathology , Adolescent , Adult , Aged , Electroencephalography , Epilepsy, Generalized/diagnosis , Female , Humans , Male , Middle Aged , Seizures/diagnosis , Severity of Illness Index , Young Adult
14.
Epilepsia ; 61(8): 1570-1580, 2020 08.
Article in English | MEDLINE | ID: mdl-32683693

ABSTRACT

OBJECTIVES: Hypoxia, or abnormally low blood-oxygen levels, often accompanies seizures and may elicit brain structural changes in people with epilepsy which contribute to central processes underlying sudden unexpected death in epilepsy (SUDEP). The extent to which hypoxia may be related to brain structural alterations in this patient group remains unexplored. METHODS: We analyzed high-resolution T1-weighted magnetic resonance imaging (MRI) to determine brain morphometric and volumetric alterations in people with generalized tonic-clonic seizures (GTCS) recorded during long-term video-electroencephalography (VEEG), recruited from two sites (n = 22), together with data from age- and sex-matched healthy controls (n = 43). Subjects were sub-divided into those with mild/moderate (GTCS-hypox-mild/moderate, n = 12) and severe (GTCS-hypox-severe, n = 10) hypoxia, measured by peripheral oxygen saturation (SpO2 ) during VEEG. Whole-brain voxel-based morphometry (VBM) and regional volumetry were used to assess group comparisons and correlations between brain structural measurements as well as the duration and extent of hypoxia during GTCS. RESULTS: Morphometric and volumetric alterations appeared in association with peri-GTCS hypoxia, including volume loss in the periaqueductal gray (PAG), thalamus, hypothalamus, vermis, cerebellum, parabrachial pons, and medulla. Thalamic and PAG volume was significantly reduced in GTCS patients with severe hypoxia compared with GTCS patients with mild/moderate hypoxia. Brainstem volume loss appeared in both hypoxia groups, although it was more extensive in those with severe hypoxia. Significant negative partial correlations emerged between thalamic and hippocampal volume and extent of hypoxia, whereas vermis and accumbens volumes declined with increasing hypoxia duration. SIGNIFICANCE: Brain structural alterations in patients with GTCS are related to the extent of hypoxia in brain sites that serve vital functions. Although the changes are associative only, they provide evidence of injury to regulatory brain sites related to respiratory manifestations of seizures.


Subject(s)
Brain/diagnostic imaging , Epilepsy, Tonic-Clonic/metabolism , Hypoxia/metabolism , Sudden Unexpected Death in Epilepsy , Adult , Brain/pathology , Brain/physiopathology , Case-Control Studies , Electroencephalography , Epilepsy, Tonic-Clonic/diagnostic imaging , Epilepsy, Tonic-Clonic/physiopathology , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Prospective Studies , Sleep , Time Factors , Video Recording , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
15.
Seizure ; 78: 31-37, 2020 May.
Article in English | MEDLINE | ID: mdl-32155575

ABSTRACT

Over the last few decades the ILAE classifications for seizures and epilepsies (ILAE-EC) have been updated repeatedly to reflect the substantial progress that has been made in diagnosis and understanding of the etiology of epilepsies and seizures and to correct some of the shortcomings of the terminology used by the original taxonomy from the 1980s. However, these proposals have not been universally accepted or used in routine clinical practice. During the same period, a separate classification known as the "Four-dimensional epilepsy classification" (4D-EC) was developed which includes a seizure classification based exclusively on ictal symptomatology, which has been tested and adapted over the years. The extensive arguments for and against these two classification systems made in the past have mainly focused on the shortcomings of each system, presuming that they are incompatible. As a further more detailed discussion of the differences seemed relatively unproductive, we here review and assess the concordance between these two approaches that has evolved over time, to consider whether a classification incorporating the best aspects of the two approaches is feasible. To facilitate further discussion in this direction we outline a concrete proposal showing how such a compromise could be accomplished, the "Integrated Epilepsy Classification". This consists of five categories derived to different degrees from both of the classification systems: 1) a "Headline" summarizing localization and etiology for the less specialized users, 2) "Seizure type(s)", 3) "Epilepsy type" (focal, generalized or unknown allowing to add the epilepsy syndrome if available), 4) "Etiology", and 5) "Comorbidities & patient preferences".


Subject(s)
Epilepsy/classification , Practice Guidelines as Topic , Societies, Medical , Humans
17.
Front Hum Neurosci ; 14: 617061, 2020.
Article in English | MEDLINE | ID: mdl-33551780

ABSTRACT

Objective: Electrical stimulation (ES) potentially delineates epileptogenic cortex through induction of typical seizures. Although frequently employed, its value for epilepsy surgery remains controversial. Similarly, ES is used to identify symptomatogenic zones, but with greater success and a long-standing evidence base. Recent work points to new seizure symptoms such as ictal central apnea (ICA) that may enhance presurgical hypotheses. The aims of this review are 2-fold: to determine the value of ES-induced seizures (ESIS) in epilepsy surgery and to analyze current evidence on ICA as a new surrogate of symptomatogenic cortex. Methods: Three databases were searched for ESIS. Investigators independently selected studies according to pre-specified criteria. Studies reporting postoperative outcome in patients with ESIS were included in a meta-analysis. For ES-induced apnea, a thorough search was performed and reference list searching was employed. Results: Of 6,314 articles identified for ESIS, 25 were considered eligible to be reviewed in full text. Fourteen studies were included in the qualitative synthesis (1,069 patients); six studies were included in the meta-analysis (530 patients). The meta-analysis showed that favorable outcome is associated with ESIS prior to surgery (OR: 2.02; 95% CI: 1.332-3.08). In addition, the overall estimation of the occurrence of favorable outcome among cases with ESIS is 68.13% (95% CI: 56.62-78.7). On the other hand, recent studies have shown that stimulation of exclusively mesial temporal lobe structures elicits central apnea and represents symptomatogenic anatomic substrates of ICA. This is in variance with traditional teaching that mesial temporal ES is non-symptomatogenic. Conclusions: ES is a tool highly likely to aid in the delineation of the epileptogenic zone, since ESIS is associated with favorable postoperative outcomes (Engel I). There is an urgent need for prospective evaluation of this technique, including effective stimulation parameters and surgical outcomes, that will provide knowledge base for practice. In addition, ES-induced apnea studies suggest that ICA, especially when it is the first or only clinical sign, is an important semiological feature in localizing the symptomatogenic zone to mesial temporal lobe structures, which must be considered in SEEG explorations where this is planned, and in surgical resection strategies.

19.
Neurology ; 93(15): e1485-e1494, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31484709

ABSTRACT

OBJECTIVE: To determine the relationship between serum serotonin (5-HT) levels, ictal central apnea (ICA), and postconvulsive central apnea (PCCA) in epileptic seizures. METHODS: We prospectively evaluated video EEG, plethysmography, capillary oxygen saturation (SpO2), and ECG for 49 patients (49 seizures) enrolled in a multicenter study of sudden unexpected death in epilepsy (SUDEP). Postictal and interictal venous blood samples were collected after a clinical seizure for measurement of serum 5-HT levels. Seizures were classified according to the International League Against Epilepsy 2017 seizure classification. We analyzed seizures with and without ICA (n = 49) and generalized convulsive seizures (GCS) with and without PCCA (n = 27). RESULTS: Postictal serum 5-HT levels were increased over interictal levels for seizures without ICA (p = 0.01), compared to seizures with ICA (p = 0.21). In patients with GCS without PCCA, serum 5-HT levels were increased postictally compared to interictal levels (p < 0.001), but not in patients with seizures with PCCA (p = 0.22). Postictal minus interictal 5-HT levels also differed between the 2 groups with and without PCCA (p = 0.03). Increased heart rate was accompanied by increased serum 5-HT levels (postictal minus interictal) after seizures without PCCA (p = 0.03) compared to those with PCCA (p = 0.42). CONCLUSIONS: The data suggest that significant seizure-related increases in serum 5-HT levels are associated with a lower incidence of seizure-related breathing dysfunction, and may reflect physiologic changes that confer a protective effect against deleterious phenomena leading to SUDEP. These results need to be confirmed with a larger sample size study.


Subject(s)
Apnea/complications , Apnea/metabolism , Death, Sudden/etiology , Epilepsy/complications , Epilepsy/metabolism , Serotonin/metabolism , Adolescent , Adult , Aged , Apnea/physiopathology , Electroencephalography/methods , Epilepsy/physiopathology , Female , Humans , Male , Middle Aged , Seizures/complications , Seizures/physiopathology
20.
Epilepsy Behav ; 99: 106475, 2019 10.
Article in English | MEDLINE | ID: mdl-31477538
SELECTION OF CITATIONS
SEARCH DETAIL
...