Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 41(15): 7566-76, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23748954

ABSTRACT

The 2'-deoxynucleoside containing the synthetic base 1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)-tetrahydrofuran-2-yl)-1H-perimidin-2(3H)-one] (dPer) recognizes in DNA the O(6)-benzyl-2'-deoxyguanosine nucleoside (O(6)-Bn-dG), formed by exposure to N-benzylmethylnitrosamine. Herein, we show how dPer distinguishes between O(6)-Bn-dG and dG in DNA. The structure of the modified Dickerson-Drew dodecamer (DDD) in which guanine at position G(4) has been replaced by O(6)-Bn-dG and cytosine C(9) has been replaced with dPer to form the modified O(6)-Bn-dG:dPer (DDD-XY) duplex [5'-d(C(1)G(2)C(3)X(4)A(5)A(6)T(7)T(8)Y(9)G(10)C(11)G(12))-3']2 (X = O(6)-Bn-dG, Y = dPer) reveals that dPer intercalates into the duplex and adopts the syn conformation about the glycosyl bond. This provides a binding pocket that allows the benzyl group of O(6)-Bn-dG to intercalate between Per and thymine of the 3'-neighbor A:T base pair. Nuclear magnetic resonance data suggest that a similar intercalative recognition mechanism applies in this sequence in solution. However, in solution, the benzyl ring of O(6)-Bn-dG undergoes rotation on the nuclear magnetic resonance time scale. In contrast, the structure of the modified DDD in which cytosine at position C(9) is replaced with dPer to form the dG:dPer (DDD-GY) [5'-d(C(1)G(2)C(3)G(4)A(5)A(6)T(7)T(8)Y(9)G(10)C(11)G(12))-3']2 duplex (Y = dPer) reveals that dPer adopts the anti conformation about the glycosyl bond and forms a less stable wobble pairing interaction with guanine.


Subject(s)
Base Pairing , DNA/chemistry , Deoxyguanosine/analogs & derivatives , Nucleosides/chemical synthesis , Base Sequence , DNA/genetics , Deoxyguanosine/chemistry , Glycosylation , Guanine/chemistry , Hydrogen Bonding , Models, Molecular , Nucleic Acid Conformation , Nucleosides/chemistry , Nucleosides/genetics , Thermodynamics , Thymine/chemistry
2.
Nucleic Acids Res ; 39(9): 3988-4006, 2011 May.
Article in English | MEDLINE | ID: mdl-21245046

ABSTRACT

Endogenous 5-methylcytosine ((Me)C) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational 'hotspots' for smoking induced lung cancer. (Me)C enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5'-CCCGGCACCC GC[(15)N(3),(13)C(1)-G]TCCGCG-3', + strand) were prepared containing [(15)N(3), (13)C(1)]-guanine opposite unsubstituted cytosine, (Me)C, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2'-deoxynucleosides, N(2)-BPDE-dG adducts formed at the [(15)N(3), (13)C(1)]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N(2)-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE-DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N(2) position of guanine.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/analogs & derivatives , Cytosine/analogs & derivatives , DNA Adducts/chemistry , Deoxyguanosine/analogs & derivatives , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry , Base Pairing , Chromatography, High Pressure Liquid , Deoxyguanosine/chemistry , Genes, p53 , Guanine/chemistry , Isotope Labeling , Models, Molecular , Oligodeoxyribonucleotides/chemical synthesis , Oligodeoxyribonucleotides/chemistry , Spectrometry, Fluorescence , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...