Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 15(5): 387-393, 2018 05.
Article in English | MEDLINE | ID: mdl-29578536

ABSTRACT

Cells use feedback regulation to ensure robust growth despite fluctuating demands for resources and differing environmental conditions. However, the expression of foreign proteins from engineered constructs is an unnatural burden that cells are not adapted for. Here we combined RNA-seq with an in vivo assay to identify the major transcriptional changes that occur in Escherichia coli when inducible synthetic constructs are expressed. We observed that native promoters related to the heat-shock response activated expression rapidly in response to synthetic expression, regardless of the construct. Using these promoters, we built a dCas9-based feedback-regulation system that automatically adjusts the expression of a synthetic construct in response to burden. Cells equipped with this general-use controller maintained their capacity for native gene expression to ensure robust growth and thus outperformed unregulated cells in terms of protein yield in batch production. This engineered feedback is to our knowledge the first example of a universal, burden-based biomolecular control system and is modular, tunable and portable.


Subject(s)
Escherichia coli/physiology , Gene Expression Regulation, Bacterial/physiology , Synthetic Biology , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing , Plasmids , Promoter Regions, Genetic , Sequence Analysis, RNA , Transcription, Genetic
2.
BioData Min ; 8: 30, 2015.
Article in English | MEDLINE | ID: mdl-26405458

ABSTRACT

BACKGROUND: The identification of interaction networks between proteins and complexes holds the promise of offering novel insights into the molecular mechanisms that regulate many biological processes. With increasing volumes of such datasets, especially in model organisms such as Drosophila melanogaster, there exists a pressing need for specialised tools, which can seamlessly collect, integrate and analyse these data. Here we describe a database coupled with a mining tool for protein-protein interactions (DAPPER), developed as a rich resource for studying multi-protein complexes in Drosophila melanogaster. RESULTS: This proteomics database is compiled through mass spectrometric analyses of many protein complexes affinity purified from Drosophila tissues and cultured cells. The web access to DAPPER is provided via an accelerated version of BioMart software enabling data-mining through customised querying and output formats. The protein-protein interaction dataset is annotated with FlyBase identifiers, and further linked to the Ensembl database using BioMart's data-federation model, thereby enabling complex multi-dataset queries. DAPPER is open source, with all its contents and source code are freely available. CONCLUSIONS: DAPPER offers an easy-to-navigate and extensible platform for real-time integration of diverse resources containing new and existing protein-protein interaction datasets of Drosophila melanogaster.

3.
Open Biol ; 2(2): 110032, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22645658

ABSTRACT

The formation of kinetochores shortly before each cell division is a prerequisite for proper chromosome segregation. The synchronous mitoses of Drosophila syncytial embryos have provided an ideal in vivo system to follow kinetochore assembly kinetics and so address the question of how kinetochore formation is regulated. We found that the nuclear exclusion of the Spc105/KNL1 protein during interphase prevents precocious assembly of the Mis12 complex. The nuclear import of Spc105 in early prophase and its immediate association with the Mis12 complex on centromeres are thus the first steps in kinetochore assembly. The cumulative kinetochore levels of Spc105 and Mis12 complex then determine the rate of Ndc80 complex recruitment commencing only after nuclear envelope breakdown. The carboxy-terminal part of Spc105 directs its nuclear import and is sufficient for the assembly of all core kinetochore components and CENP-C, when localized ectopically to centrosomes. Super-resolution microscopy shows that carboxy-terminus of Spc105 lies at the junction of the Mis12 and Ndc80 complexes on stretched kinetochores. Our study thus indicates that physical accessibility of kinetochore components plays a crucial role in the regulation of Drosophila kinetochore assembly and leads us to a model in which Spc105 is a licensing factor for its onset.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Kinetochores/physiology , Mitosis , Animals , Centromere , Chromosome Segregation , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental
SELECTION OF CITATIONS
SEARCH DETAIL
...