Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Plant Physiol ; 296: 154225, 2024 May.
Article in English | MEDLINE | ID: mdl-38522214

ABSTRACT

Local damaging stimuli cause a rapid increase in the content of the defense phytohormone jasmonic acid (JA) and its biologically active derivative jasmonoyl-L-isoleucine (JA-Ile) in undamaged distal tissues. The increase in JA and JA-Ile levels was coincident with a rapid decrease in the levels of the precursor 12-oxo-phytodienoic acid (OPDA). The propagation of a stimulus-induced long-distance electrical signal, variation potential (VP), which is accompanied by intracellular changes in pH and Ca2+ levels, preceded systemic changes in jasmonate content. The decrease in pH during VP, mediated by transient inactivation of the plasma membrane H+-ATPase, induced the conversion of OPDA to JA, probably by regulating the availability of the OPDA substrate to JA biosynthetic enzymes. The regulation of systemic synthesis of JA and JA-Ile by the Ca2+ wave accompanying VP most likely occurs by the same mechanism of pH-induced conversion of OPDA to JA due to Ca2+-mediated decrease in pH as a result of H+-ATPase inactivation. Thus, the transient increase in intracellular Ca2+ levels and the transient decrease in intracellular pH are most likely the key mechanisms of VP-mediated regulation of jasmonate production in systemic tissues upon local stimulation.


Subject(s)
Arabidopsis , Diazonium Compounds , Isoleucine/analogs & derivatives , Pyridines , Arabidopsis/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Isoleucine/metabolism , Proton-Translocating ATPases/metabolism , Hydrogen-Ion Concentration
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279229

ABSTRACT

Salinity is one of the most dangerous types of stress in agriculture. Acting on the root, salinity causes changes in physiological processes in the shoot, especially photosynthesis, which is crucial for plant productivity. In our study, we used potato plants, the most important crop, to investigate the role of salt-induced signals in changes in photosynthesis activity. We found a salt-induced polyphasic decrease in photosynthesis activity, and the earliest phase started several minutes after salt addition. We found that salt addition triggered rapid hydraulic and calcium waves from root to shoot, which occurred earlier than the first phase of the photosynthesis response. The inhibition of calcium signals by lanthanum decreased with the formation of rapid changes in photosynthesis. In addition to this, a comparison of the characteristic times of signal propagation and the formation of a response revealed the role of calcium waves in the modulation of rapid changes in photosynthesis. Calcium waves are activated by the ionic component of salinity. The salt-induced decrease in transpiration corresponds in time to the second phase of the photosynthetic response, and it can be the cause of this change. The accumulation of sodium in the leaves occurs a few hours after salt addition, and it can be the cause of the long-term suppression of photosynthesis. Thus, salinity modulates photosynthetic activity in plants in different ways: both through the activation of rapid distant signals and by reducing the water input and sodium accumulation.


Subject(s)
Photosynthesis , Sodium Chloride , Solanum tuberosum , Plant Leaves , Plant Roots , Salinity , Sodium , Sodium Chloride/toxicity
3.
Biochemistry (Mosc) ; 88(10): 1467-1487, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38105018

ABSTRACT

Electrical signals (ESs) appearing in plants under the action of various external factors play an important role in adaptation to changing environmental conditions. Generation of ES in higher plant cells is associated with activation of Ca2+, K+, and anion fluxes, as well as with changes in the activity of plasma membrane H+-ATPase. In the present review, molecular nature of the ion channels contributing to ESs transmission in higher plants is analyzed based on comparison of the data from molecular-genetic and electrophysiological studies. Based on such characteristics of ion channels as selectivity, activation mechanism, and intracellular and tissue localization, those ion channels that meet the requirements for potential participation in ES generation were selected from a wide variety of ion channels in higher plants. Analysis of the data of experimental studies performed on mutants with suppressed or enhanced expression of a certain channel gene revealed those channels whose activation contributes to ESs formation. The channels responsible for Ca2+ flux during generation of ESs include channels of the GLR family, for K+ flux - GORK, for anions - MSL. Consideration of the prospects of further studies suggests the need to combine electrophysiological and genetic approaches along with analysis of ion concentrations in intact plants within a single study.


Subject(s)
Calcium , Ion Channels , Calcium/metabolism , Ion Channels/metabolism , Signal Transduction , Cell Membrane/metabolism , Plants/metabolism , Anions
4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614284

ABSTRACT

Plants are constantly exposed to environmental stresses. Local stimuli sensed by one part of a plant are translated into long-distance signals that can influence the activities in distant tissues. Changes in levels of phytohormones in distant parts of the plant occur in response to various local stimuli. The regulation of hormone levels can be mediated by long-distance electrical signals, which are also induced by local stimulation. We consider the crosstalk between electrical signals and phytohormones and identify interaction points, as well as provide insights into the integration nodes that involve changes in pH, Ca2+ and ROS levels. This review also provides an overview of our current knowledge of how electrical signals and hormones work together to induce a systemic response.


Subject(s)
Plant Growth Regulators , Plants , Signal Transduction , Electricity , Stress, Physiological
5.
Plants (Basel) ; 11(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35050117

ABSTRACT

The use of photoconversion coatings is a promising approach to improving the quality of light when growing plants in greenhouses in low light conditions. In this work, we studied the effect of fluoropolymer coatings, which produce photoconversion of UV-A radiation and violet light into blue and red light, on the growth and resistance to heat stress of tomato plants (Solanum lycopersicum L.). The stimulating effect of the spectrum obtained as a result of photoconversion on plant growth and the activity of the photosynthesis process are shown. At the same time, the ability to withstand heat stress is reduced in plants grown under a photoconversion coating. Stress electrical signals, which normally increase resistance, in such plants have a much weaker protective effect on the photosynthetic apparatus. The observed effects are apparently explained by a decrease in the concentration of H2O2 in plants grown using photoconversion technologies, which leads to a shift in the development program towards increased productivity to the detriment of the protective function. Thus, when using photoconversion technologies in agricultural practice, it is necessary to pay increased attention to maintaining stable conditions during plant cultivation.

6.
Int J Mol Sci ; 22(19)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34639056

ABSTRACT

Plants have developed complex systems of perception and signaling to adapt to changing environmental conditions. Electrical signaling is one of the most promising candidates for the regulatory mechanisms of the systemic functional response under the local action of various stimuli. Long-distance electrical signals of plants, such as action potential (AP), variation potential (VP), and systemic potential (SP), show specificities to types of inducing stimuli. The systemic response induced by a long-distance electrical signal, representing a change in the activity of a complex of molecular-physiological processes, includes a nonspecific component and a stimulus-specific component. This review discusses possible mechanisms for transmitting information about the nature of the stimulus and the formation of a specific systemic response with the participation of electrical signals induced by various abiotic factors.


Subject(s)
Electrophysiological Phenomena , Plant Physiological Phenomena , Signal Transduction , Stress, Physiological , Physical Stimulation
7.
J Plant Physiol ; 258-259: 153377, 2021.
Article in English | MEDLINE | ID: mdl-33621780

ABSTRACT

Mechanisms of the specific systemic response of plant to different adverse factors are poorly understood. We studied the mechanisms acting in wheat (Triticum aestivum L.) under the action of local burn and gradual heating. Both stimuli induce a variation potential (VP) propagation and a biphasic (fast and long-term phases) photosynthetic response in non-stimulated zones of plant with stimulus-specific parameters of the latter: the fast phase or long-term phase predominance in responses induced by burn or heating, respectively. The burn-induced VP and photosynthetic response attenuate with distance, while the heating-induced VP and photosynthetic response were of more stable amplitude in distant part of the stimulated plant. VP propagation in both cases induced apoplast alkalization with dynamics well corresponding to such of VP and of the fast phase of photosynthetic response. Gradual heating induced a significant rise in jasmonate production along with a decrease in stomatal conductance with characteristic times well corresponding to the long-term phase of the photosynthetic response. We suppose that the VP-induced pH shift is responsible for in the induction of the fast phase, while jasmonate production for the long-term phase of the photosynthetic response. The revealed differences in the systemic response to stressors studied, apparently, reflect two distinct plant adaptation strategies to fast and slow-growing stimuli. The immediate response in the tissue nearest to the damage zone is the most important under a fast-growing stimulus. The fundamentally different situation is under a slowly-growing stimulus which provokes long-term changes in the plant that ensure the preparation of the whole organism for impending environmental changes.


Subject(s)
Fires , Heating/adverse effects , Plant Leaves/physiology , Stress, Physiological/physiology , Triticum/physiology , Hydrogen-Ion Concentration , Plant Growth Regulators/metabolism
8.
Plant Signal Behav ; 16(4): 1869415, 2021 04 03.
Article in English | MEDLINE | ID: mdl-33404323

ABSTRACT

Electrical signals in plants caused by external stimuli are capable of inducing various physiological responses. The mechanisms of transformation of a long-distance electrical signal (ES) into a functional response remain largely unexplored and require additional research. In this work, we investigated the role of calcium ions in the development of ES-induced respiratory response. Gradual heating of the leaf causes the propagation of variation potential (VP) in the pea seedling. The propagation of VP leads to a transient activation of respiration in an unaffected leaf. During the VP generation, a transient increase in the intracellular calcium concentration takes place. A calcium channel blocker inhibits the respiratory response, and a calcium ionophore induces the activation of respiration. Inhibitory analysis has showed that the VP-induced increase in respiration activity is probably associated with calcium-mediated activation of rotenone-insensitive alternative NADPH dehydrogenases in mitochondria.


Subject(s)
Calcium/metabolism , Pisum sativum/metabolism , Seedlings/metabolism , Calcimycin/pharmacology , Cell Respiration , Electrophysiological Phenomena , Intracellular Space/metabolism , Ions , Models, Biological , NADPH Dehydrogenase/metabolism
9.
Biology (Basel) ; 9(10)2020 Oct 04.
Article in English | MEDLINE | ID: mdl-33020382

ABSTRACT

Abscisic acid (ABA) is an important hormone in plants that participates in their acclimation to the action of stressors. Treatment by exogenous ABA and its synthetic analogs are a potential way of controlling the tolerance of agricultural plants; however, the mechanisms of influence of the ABA treatment on photosynthetic processes require further investigations. The aim of our work was to investigate the participation of inactivation of the plasma membrane H+-ATP-ase on the influence of ABA treatment on photosynthetic processes and their regulation by electrical signals in peas. The ABA treatment of seedlings was performed by spraying them with aqueous solutions (10-5 M). The combination of a Dual-PAM-100 PAM fluorometer and GFS-3000 infrared gas analyzer was used for photosynthetic measurements; the patch clamp system on the basis of a SliceScope Pro 2000 microscope was used for measurements of electrical activity. It was shown that the ABA treatment stimulated the cyclic electron flow around photosystem I and decreased the photosynthetic CO2 assimilation, the amplitude of burning-induced electrical signals (variation potentials), and the magnitude of photosynthetic responses relating to these signals; in contrast, treatment with exogenous ABA increased the heat tolerance of photosynthesis. An investigation of the influence of ABA treatment on the metabolic component of the resting potential showed that this treatment decreased the activity of the H+-ATP-ase in the plasma membrane. Inhibitor analysis using sodium orthovanadate demonstrated that this decrease may be a mechanism of the ABA treatment-induced changes in photosynthetic processes, their heat tolerance, and regulation by electrical signals.

10.
Plants (Basel) ; 9(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076246

ABSTRACT

A local leaf burning causes variation potential (VP) propagation, a decrease in photosynthesis activity, and changes in the content of phytohormones in unstimulated leaves in pea plants. The VP-induced photosynthesis response develops in two phases: fast inactivation and long-term inactivation. Along with a decrease in photosynthetic activity, there is a transpiration suppression in unstimulated pea leaves, which corresponds to the long-term phase of photosynthesis response. Phytohormone level analysis showed an increase in the concentration of jasmonic acid (JA) preceding a transpiration suppression and a long-term phase of the photosynthesis response. Analysis of the spatial and temporal dynamics of electrical signals, phytohormone levels, photosynthesis, and transpiration activity showed the most pronounced changes in the more distant leaf from the area of local stimulation. The established features are related to the architecture of the vascular bundles in the pea stem.

SELECTION OF CITATIONS
SEARCH DETAIL
...