Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 73: 102167, 2021 10.
Article in English | MEDLINE | ID: mdl-34333217

ABSTRACT

While pap test is the most common diagnosis methods for cervical cancer, their results are highly dependent on the ability of the cytotechnicians to detect abnormal cells on the smears using brightfield microscopy. In this paper, we propose an explainable region classifier in whole slide images that could be used by cyto-pathologists to handle efficiently these big images (100,000x100,000 pixels). We create a dataset that simulates pap smears regions and uses a loss, we call classification under regression constraint, to train an efficient region classifier (about 66.8% accuracy on severity classification, 95.2% accuracy on normal/abnormal classification and 0.870 KAPPA score). We explain how we benefit from this loss to obtain a model focused on sensitivity and, then, we show that it can be used to perform weakly supervised localization (accuracy of 80.4%) of the cell that is mostly responsible for the malignancy of regions of whole slide images. We extend our method to perform a more general detection of abnormal cells (66.1% accuracy) and ensure that at least one abnormal cell will be detected if malignancy is present. Finally, we experiment our solution on a small real clinical slide dataset, highlighting the relevance of our proposed solution, adapting it to be as easily integrated in a pathology laboratory workflow as possible, and extending it to make a slide-level prediction.


Subject(s)
Early Detection of Cancer , Uterine Cervical Neoplasms , Computers , Diagnosis, Computer-Assisted , Female , Humans , Image Interpretation, Computer-Assisted , Uterine Cervical Neoplasms/diagnostic imaging
2.
Med Phys ; 44(9): e164-e173, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28901617

ABSTRACT

PURPOSE: This paper investigates the capabilities of a dual-rotation C-arm cone-beam computed tomography (CBCT) framework to improve non-contrast-enhanced low-contrast detection for full volume or volume-of-interest (VOI) brain imaging. METHOD: The idea is to associate two C-arm short-scan rotational acquisitions (spins): one over the full detector field of view (FOV) at low dose, and one collimated to deliver a higher dose to the central densest parts of the head. The angular sampling performed by each spin is allowed to vary in terms of number of views and angular positions. Collimated data is truncated and does not contain measurement of the incoming X-ray intensities in air (air calibration). When targeting full volume reconstruction, the method is intended to act as a virtual bow-tie. When targeting VOI imaging, the method is intended to provide the minimum full detector FOV data that sufficiently corrects for truncation artifacts. A single dedicated iterative algorithm is described that handles all proposed sampling configurations despite truncation and absence of air calibration. RESULTS: Full volume reconstruction of dual-rotation simulations and phantom acquisitions are shown to have increased low-contrast detection for less dose, with respect to a single-rotation acquisition. High CNR values were obtained on 1% inserts of the Catphan® 515 module in 0.94 mm thick slices. Image quality for VOI imaging was preserved from truncation artifacts even with less than 10 non-truncated views, without using the sparsity a priori common to such context. CONCLUSION: A flexible dual-rotation acquisition and reconstruction framework is proposed that has the potential to improve low-contrast detection in clinical C-arm brain soft-tissue imaging.


Subject(s)
Cone-Beam Computed Tomography , Phantoms, Imaging , Algorithms , Artifacts , Humans , Rotation
3.
IEEE Trans Image Process ; 17(8): 1465-72, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18632354

ABSTRACT

Space agencies are rapidly building up massive image databases. A particularity of these databases is that they are made of images with different, but known, resolutions. In this paper, we introduce a new scheme allowing us to compare and index images with different resolutions. This scheme relies on a simplified acquisition model of satellite images and uses continuous wavelet decompositions. We establish a correspondence between scales which permits us to compare wavelet decompositions of images having different resolutions. We validate the approach through several matching and classification experiments, and we show that taking the acquisition process into account yields better results than just using scaling properties of wavelet features.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Sample Size , Signal Processing, Computer-Assisted , Spacecraft , Subtraction Technique
4.
IEEE Trans Image Process ; 16(10): 2503-14, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17926932

ABSTRACT

We study the problem of finding the characteristic scale of a given satellite image. This feature is defined so that it does not depend on the spatial resolution of the image. This is a different problem than achieving scale invariance, as often studied in the literature. Our approach is based on the use of a linear scale space and the total variation (TV). The critical scale is defined as the one at which the normalized TV reaches its maximum. It is shown experimentally, both on synthetic and real data, that the computed characteristic scale is resolution independent.


Subject(s)
Algorithms , Artificial Intelligence , Environmental Monitoring/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Spacecraft , Reproducibility of Results , Sensitivity and Specificity
5.
IEEE Trans Image Process ; 11(10): 1129-40, 2002.
Article in English | MEDLINE | ID: mdl-18249685

ABSTRACT

We address the problem of computing a local orientation map in a digital image. We show that standard image gray level quantization causes a strong bias in the repartition of orientations, hindering any accurate geometric analysis of the image. In continuation, a simple dequantization algorithm is proposed, which maintains all of the image information and transforms the quantization noise in a nearby Gaussian white noise (we actually prove that only Gaussian noise can maintain isotropy of orientations). Mathematical arguments are used to show that this results in the restoration of a high quality image isotropy. In contrast with other classical methods, it turns out that this property can be obtained without smoothing the image or increasing the signal-to-noise ratio (SNR). As an application, it is shown in the experimental section that, thanks to this dequantization of orientations, such geometric algorithms as the detection of nonlocal alignments can be performed efficiently. We also point out similar improvements of orientation quality when our dequantization method is applied to aliased images.

SELECTION OF CITATIONS
SEARCH DETAIL
...