Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 255: 121469, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38493740

ABSTRACT

Soil salinization poses a significant challenge to agricultural activities. To address this, the agricultural industry seeks an irrigation water solution that reduces both ionic conductivity and sodium adsorption rate (SAR), thereby diminishing the risks of soil sodification and fostering sustainable crop production. Capacitive deionization (CDI) is an attractive electrochemical technology to advance this search. Recently, a one-dimensional transient CDI model unveiled a capacitive ion-exchange mechanism presenting the potential to adjust the treated water composition by modifying monovalent and divalent cation concentrations, thereby influencing the SAR index. This behavior would be achieved by using electrodes rich in surface functional groups able to efficiently capture divalent cations during conditioning and releasing them during charging while capturing monovalent ions. Beyond the theoretical modelling, the current experimental research demonstrates, for the first time, the effectiveness of the capacitive ion-exchange mechanism in a CDI pilot plant using real water samples spiked with solutions containing specific mono and divalent ions. Electrosorption experiments and computational modeling, specifically Density-Functional Theory (DFT), were used along with the analysis of the surface functional groups present in the electrodes to describe the capacitive ion-exchange phenomenon and validate the steps involved on it, highlighting the conditioning as a critical step. Various operational and flow modes confirm the versatility of CDI technology, achieving separation factors (RMg/Na) of 5-6 in batch, raising production from 0.5 to 0.8 L m-2 h-1 (batch) to 8.0-8.1 L m-2 h-1 when using single pass although reducing RMg/Na to 2. The reliability of the CDI technology in reducing SAR was also successfully tested with different influent compositions, including magnesium and calcium. Finally, the robustness of the capacitive ion-exchange mechanism was validated by a second CDI laboratory 9-cell stack cycled over 350 cycles. Our results confirm the reported theoretical model and expands the conclusions through the experiments in a pilot plant showing direct implications for employing CDI in agricultural applications.

2.
Environ Sci Technol ; 47(20): 11866-72, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24015835

ABSTRACT

Capacitive deionization (CDI) is a rapidly emerging desalination technology that promises to deliver clean water while storing energy in the electrical double layer (EDL) near a charged surface in a capacitive format. Whereas most research in this subject area has been devoted to using CDI for removing salts, little attention has been paid to the energy storage aspect of the technology. However, it is energy storage that would allow this technology to compete with other desalination processes if this energy could be stored and reused efficiently. This requires that the operational aspects of CDI be optimized with respect to energy used both during the removal of ions as well as during the regeneration cycle. This translates into the fact that currents applied during deionization (charging the EDL) will be different from those used in regeneration (discharge). This paper provides a mechanistic analysis of CDI in terms of energy consumption and energy efficiencies during the charging and discharging of the system under several scenarios. In a previous study, we proposed an operational buffer mode in which an effective separation of deionization and regeneration steps would allow one to better define the energy balance of this CDI process. This paper reports on using this concept, for optimizing energy efficiency, as well as to improve upon the electro-adsorption of ions and system lifetime. Results obtained indicate that real-world operational modes of running CDI systems promote the development of new and unexpected behavior not previously found, mainly associated with the inhomogeneous distribution of ions across the structure of the electrodes.


Subject(s)
Conservation of Energy Resources , Electric Capacitance , Water Purification/instrumentation , Water Purification/methods , Dielectric Spectroscopy , Kinetics , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...