Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Anal Bioanal Chem ; 415(27): 6619-6632, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37755489

ABSTRACT

The study of protein oxidation remains a challenge despite the biomedical interest in reliable biomarkers of oxidative stress. This is particularly true for carbonylations although, recently, liquid chromatography-mass spectrometry techniques (LC-MS) have been proposed to detect this non-enzymatic and poorly distributed oxidative modification of proteins using untargeted or carbonyl-reactive probe methods. These methods proved to be feasible but could not preserve the dynamic range of the protein sample, making it impossible to quantify oxidatively modified proteoforms compared with native proteoforms. Here, we propose an innovative method based on the implementation of a reactive carbonyl probe conjugated with a laser-sensitive chromophore, dabcyl-aminooxy, which confers optical specificity to the LC-MS approach. In addition, our protein carbonyl detection method allows us to localize individual carbonylation sites by observing fragments of derivatized oxidized peptides. Two model proteins, alpha-synuclein and beta-lactoglobulin, were oxidized and carbonylation sites were detected, resulting in the identification of respectively 34 and 77 different carbonylated amino acids. Thus, we demonstrated the application of a direct and sensitive method for studying protein carbonylation sites in complex protein extracts.

2.
Redox Biol ; 63: 102743, 2023 07.
Article in English | MEDLINE | ID: mdl-37207613

ABSTRACT

Oxidative stress and oxidative protein damage occur in various biological processes and diseases. The carbonyl group on amino acid side chains is the most widely used protein oxidation biomarker. Carbonyl groups are commonly detected indirectly through their reaction with 2,4-dinitrophenylhydrazine (DNPH) and subsequent labeling with an anti-DNP antibody. However, the DNPH immunoblotting method lacks protocol standardization, exhibits technical bias, and has low reliability. To overcome these shortcomings, we have developed a new blotting method in which the carbonyl group reacts with the biotin-aminooxy probe to form a chemically stable oxime bond. The reaction speed and the extent of the carbonyl group derivatization are increased by adding a p-phenylenediamine (pPDA) catalyst under neutral pH conditions. These improvements are crucial since they ensure that the carbonyl derivatization reaction reaches a plateau within hours and increases the sensitivity and robustness of protein carbonyl detection. Furthermore, derivatization under pH-neutral conditions facilitates a good SDS-PAGE protein migration pattern, avoids protein loss by acidic precipitation, and is directly compatible with protein immunoprecipitation. This work describes the new Oxime blot method and demonstrates its use in detecting protein carbonylation in complex matrices from diverse biological samples.


Subject(s)
Oxidative Stress , Proteins , Reproducibility of Results , Proteins/chemistry , Protein Carbonylation
3.
Commun Chem ; 4(1): 69, 2021 May 14.
Article in English | MEDLINE | ID: mdl-36697618

ABSTRACT

Atomically precise, ligand-protected gold nanoclusters (AuNCs) attract considerable attention as contrast agents in the biosensing field. However, the control of their optical properties and functionalization of surface ligands remain challenging. Here we report a strategy to tailor AuNCs for the precise detection of protein carbonylation-a causal biomarker of ageing. We produce Au15SG13 (SG for glutathione) with atomic precision and functionalize it with a thiolated aminooxy moiety to impart protein carbonyl-binding properties. Mass spectrometry and molecular modelling reveal the key structural features of Au15SG12-Aminooxy and its reactivity towards carbonyls. Finally, we demonstrate that Au15SG12-Aminooxy detects protein carbonylation in gel-based 1D electrophoresis by one- and two-photon excited fluorescence. Importantly, to our knowledge, this is the first application of an AuNC that detects a post-translational modification as a nonlinear optical probe. The significance of post-translational modifications in life sciences may open avenues for the use of Au15SG13 and other nanoclusters as contrast agents with tailored surface functionalization and optical properties.

4.
Pathog Dis ; 74(5)2016 07.
Article in English | MEDLINE | ID: mdl-27162211

ABSTRACT

Bacteria of the Enterobacter cloacae complex are among the ten most common pathogens causing nosocomial infections in the USA. Consequently, increased resistance to ß-lactam antibiotics, particularly expanded-spectrum cephalosporins like cefotaxime (CTX), poses a serious threat. Differential In-Gel Electrophoresis (DIGE), followed by LC-MS/MS analysis and bioinformatics tools, was employed to investigate the survival mechanisms of a multidrug-resistant E. hormaechei subsp. steigerwaltii 51 carrying several ß-lactamase-encoding genes, including the 'pandemic' blaCTX-M-15 After exposing the strain with sub-minimal inhibitory concentration (MIC) of CTX, a total of 1072 spots from the whole-cell proteome were detected, out of which 35 were differentially expressed (P ≤ 0.05, fold change ≥1.5). Almost 50% of these proteins were involved in cell metabolism and energy production, and then cell wall organization/virulence, stress response and transport. This is the first study investigating the whole-cell proteomic response related to the survival of ß-lactamases-producing strain, belonging to the E. cloacae complex when exposed to ß-lactam antibiotic. Our data support the theory of a multifactorial synergistic effect of diverse proteomic changes occurring in bacterial cells during antibiotic exposure, depicting the complexity of ß-lactam resistance and giving us an insight in the key pathways mediating the antibiotic resistance in this emerging opportunistic pathogen.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cefotaxime/pharmacology , Enterobacter cloacae/drug effects , Enterobacter cloacae/metabolism , Proteome , Proteomics , Stress, Physiological/drug effects , beta-Lactamases/biosynthesis , Cell Wall/metabolism , Computational Biology/methods , Energy Metabolism , Enterobacter cloacae/classification , Flagella/metabolism , Proteomics/methods , Virulence , beta-Lactam Resistance
5.
Mech Ageing Dev ; 152: 56-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26432922

ABSTRACT

To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4(+) T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25 years) and older (n=10; 50-70 years) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p<0.05 and >1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4(+) T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4(+) T cells (p<0.05). In an independent age-matched case-control study, lower CD4(+) T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease.


Subject(s)
Aging/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Membrane/immunology , Phosphopyruvate Hydratase/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Aging/blood , CD4-Positive T-Lymphocytes/enzymology , Cell Membrane/enzymology , Humans , Male , Middle Aged , Phosphopyruvate Hydratase/blood
6.
PLoS One ; 9(2): e86300, 2014.
Article in English | MEDLINE | ID: mdl-24520319

ABSTRACT

BACKGROUND: The impact of overweight among men of reproductive-age may affect fertility. Abdominal fat, more than body mass index, is an indicator of higher metabolic risk, which seems to be involved in decreasing sperm quality. This study aims to assess the relationship between abdominal fat and sperm DNA fragmentation and the effect of abdominal fat loss, among 6 men in subfertile couples. METHODS: Sperm DNA fragmentation, abdominal fat and metabolic and hormonal profiles were measured in the 6 men before and after dietary advices. Seminal oxidative stress and antioxidant markers were determined. RESULTS: After several months of a lifestyle program, all 6 men lost abdominal fat (patient 1: loss of 3 points of abdominal fat, patient 2: loss of 3 points, patient 3: loss of 2 points, patient 4: loss of 1 point, patient 5: loss of 4 points and patient 6: loss of 13 points). At the same time, their rate of sperm DNA fragmentation decreased: 9.5% vs 31%, 24% vs 43%, 18% vs 47%, 26.3% vs 66%, 25.4% vs 35% and 1.7% vs 25%. Also, an improvement in both metabolic (significant decrease in triglycerides and total cholesterol; p = 0.0139) and hormonal (significant increase in testosterone/oestradiol ratio; p = 0.0139) blood profiles was observed after following the lifestyle program. In seminal plasma, the amount of SOD2 has significantly increased (p = 0.0139) while in parallel carbonylated proteins have decreased. Furthermore, all spouses got pregnant. All pregnancies were brought to term. CONCLUSION: This study shows specifically that sperm DNA fragmentation among men in subfertile couples could be affected by abdominal fat, but improvement of lifestyle factor may correct this alteration. The effect of specific abdominal fat loss on sperm quality needs further investigation. The reduction of oxidative stress may be a contributing factor.


Subject(s)
Abdominal Fat/pathology , Family Characteristics , Infertility/pathology , Spermatozoa/metabolism , Adult , Antioxidants/metabolism , Biomarkers/metabolism , Delivery, Obstetric , Female , Hormones/metabolism , Humans , Infant, Newborn , Male , Metabolomics , Oxidation-Reduction , Pregnancy , Pregnancy Outcome , Semen/metabolism
7.
Free Radic Biol Med ; 75 Suppl 1: S23, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26461312

ABSTRACT

Proteins are involved in key cellular functions and our health and wellness depends on their quality. Accumulation of oxidatively damaged proteins is a hallmark of deleterious processes such increased oxidative stress, chronic inflammation, ageing and age-related diseases. Thus, quantifying and identifying oxidized proteins is a biomarker of choice for monitoring biological ageing and/or the efficiency of anti-oxidant, ant-inflammatory and anti-ageing therapies. However, the absence of reliable tools for analyses has inhibited its establishment as the gold standard for measuring the efficacy of anti-ageing and age related diseases interventions. Herein, we present a novel proteomics technology, named Oxi-DIGE?, which provides a significant improvement in terms of specificity, reproducibility and statistical support for proteomic analysis of carbonylated proteins. In Oxi-DIGE, protein carbonyls are labelled with fluorescent hydrazide probes that bind specifically to carbonyl groups in proteins. Experimental groups (e.g. control and experimental samples) are labelled with different flurophore-binded hydrazides that fluoresce light at different wavelengths, producing different colour fluorescence. Thus samples from different experimental groups are co-resolved on a single 2D gel. Increased accuracy is provided due to: (i) reduced false positives by using an exogenous synthetic fluorescent tag; (ii) multiplexing, that is the possibility to run multiple samples on the same gel, (iii) the use of an internal standard on each gel which eliminates inter-gel variations and provides an increased statistical confidence. In addition, the resolution of the carbonyl groups is improved, forming distinct spots that can be identified by mass spectrometry. ?Patent Application (M. Baraibar, R. Ladouce., B. Friguet, A method for detecting and/or quantifying carbonylated proteins (WO/2012/175519) filed by UPMC and referring to the technology described in this abstract.

8.
Mol Cell Proteomics ; 13(1): 18-29, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24068033

ABSTRACT

MicroRNAs are a novel class of powerful endogenous regulators of gene expression. MiR-378 and miR-378* are localized in the first intron of the Ppargc1b gene that codes the transcriptional co-activator PGC-1ß. The latter regulates energy expenditure as well as mitochondrial biogenesis. The miR-378:miR-378* hairpin is highly expressed in cardiac cells. To better assess their role in cardiomyocytes, we identified miR-378 and miR-378* targets via a proteomic screen. We established H9c2 cellular models of overexpression of miR-378 and miR-378* and identified a total of 86 down-regulated proteins in the presence of either one of these miRs. Functional annotation clustering showed that miR-378 and miR-378* regulate related pathways in cardiomyocytes, including energy metabolism, notably glycolysis, cytoskeleton, notably actin filaments and muscle contraction. Using bioinformatics algorithms we found that 20 proteins were predicted as direct targets of the miRs. We validated eight of these targets by quantitative RT-PCR and luciferase reporter assay. We found that miR-378 targets lactate dehydrogenase A and impacts on cell proliferation and survival whereas miR-378* targets cytoskeleton proteins actin and vimentin. Proteins involved in endoplasmic reticulum stress response such as chaperone and/or calcium buffering proteins GRP78, PPIA (cyclophilin A), calumenin, and GMMPA involved in glycosylation are repressed by these miRs. Our results show that the miR-378/378* hairpin establishes a connection among energy metabolism, cytoskeleton remodeling, and endoplasmic reticulum function through post-transcriptional regulation of key proteins involved in theses pathways.


Subject(s)
Carrier Proteins/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Proteome , Carrier Proteins/genetics , Cytoskeleton/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum Chaperone BiP , Energy Metabolism/genetics , Gene Expression Regulation , Glycolysis/genetics , Humans , MicroRNAs/genetics , Protein Biosynthesis , RNA-Binding Proteins
9.
Biochim Biophys Acta ; 1832(12): 2057-67, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23906978

ABSTRACT

Aging is accompanied by the gradual deterioration of cell functions. Particularly, mitochondrial dysfunction, associated with an accumulation of damaged proteins, is of key importance due to the central role of these organelles in cellular metabolism. However, the detailed molecular mechanisms involved in such impairment have not been completely elucidated. In the present study, proteomic analyses looking at both changes at the expression level as well as to glycative modifications of the mitochondrial proteome were performed. Two-dimensional difference gel electrophoresis analysis revealed 16 differentially expressed proteins with aging. Thirteen exhibited a decreased expression and are crucial enzymes related to OXPHOS chain complex I/V components, TCA cycle or fatty acid ß-oxidation reaction. On the other hand, 2 enzymes involved in fatty acid ß-oxidation cycle were increased in aged mitochondria. Immunodetection and further identification of glycated proteins disclosed a set of advanced glycation end product-modified proteins, including 6 enzymes involved in the fatty acid ß-oxidation process, and 2 enzymes of the TCA/urea cycles. A crucial antioxidant enzyme, catalase, was among the most strongly glycated proteins. In addition, several AGE-damaged enzymes (aldehyde dehydrogenase 2, medium chain acyl-CoA dehydrogenase and 3-ketoacyl-CoA dehydrogenase) exhibited a decreased activity with age. Taken together, these data suggest that liver mitochondria in old rats suffer from a decline in their capacity for energy production, due to (i) decreased expression of OXPHOS complex I/V components and (ii) glycative damage to key fatty acid ß-oxidation and TCA/urea cycle enzymes.


Subject(s)
Aging/pathology , Biomarkers/metabolism , Glycation End Products, Advanced/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Proteins/metabolism , Proteomics , Aging/metabolism , Animals , Blotting, Western , Female , Glycosylation , Mitochondria, Liver/pathology , Oxidation-Reduction , Rats , Rats, Wistar , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Two-Dimensional Difference Gel Electrophoresis
10.
Free Radic Biol Med ; 65: 1023-1036, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23988788

ABSTRACT

Methionine sulfoxide reductases (Msr's) are key enzymes proficient in catalyzing the reduction of oxidized methionines. This reductive trait is essential to maintaining cellular redox homeostasis from bacteria to mammals and is also regarded as a potential mechanism to regulate protein activities and signaling pathways, considering the inactivating effects that can be induced by methionine oxidation. In this study, we have generated stable human embryonic kidney HEK293 clones with an altered Msr system by silencing the expression of the main Msr elements-MsrA, MsrB1, or MsrB2. The isolated clones--the single mutants MsrA, MsrB1, and MsrB2 and double mutant MsrA/B1-show a reduced Msr activity and an exacerbated sensitivity toward oxidative stress. A two-dimensional difference in-gel electrophoresis analysis was performed on the Msr-silenced cells grown under basal conditions or submitted to oxidative stress. This proteomic analysis revealed that the disruption of the Msr system mainly affects proteins with redox, cytoskeletal or protein synthesis, and maintenance roles. Interestingly, most of the proteins found altered in the Msr mutants were also identified as potential Msr substrates and have been associated with redox or aging processes in previous studies. This study, through an extensive analysis of Msr-inhibited mutants, offers valuable input on the cellular network of a crucial maintenance system such as methionine sulfoxide reductases.


Subject(s)
Methionine Sulfoxide Reductases/genetics , Oxidative Stress , Proteome/metabolism , Gene Knockdown Techniques , HEK293 Cells , Humans , Methionine Sulfoxide Reductases/metabolism , Oxidants/pharmacology , Protein Interaction Maps , RNA Interference , Taurine/analogs & derivatives , Taurine/pharmacology
11.
J Proteomics ; 92: 63-70, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-23689083

ABSTRACT

Increased protein carbonyl content is a hallmark of cellular and organismal aging. Protein damage leading to the formation of carbonyl groups derives from direct oxidation of several amino acid side chains but can also derive through protein adducts formation with lipid peroxidation products and dicarbonyl glycating compounds. All these modifications have been implicated during oxidative stress, aging and age-related diseases. However, in most cases, the proteins targeted by these deleterious modifications as well as their consequences have not yet been clearly identified. Indeed, this is essential to determine whether and how these modified proteins are impacting on cellular function, on the development of the senescent phenotype and the pathogenesis of age-related diseases. In this context, protein modifications occurring during aging and upon oxidative stress as well as main proteomic methods for detecting, quantifying and identifying oxidized proteins are described. Relevant proteomics studies aimed at monitoring the extent of protein carbonylation and identifying the targeted proteins in the context of aging and oxidative stress are also presented. Proteomics approaches, i.e. fluorescent based 2D-gel electrophoresis and mass spectrometry methods, represent powerful tools for monitoring at the proteome level the extent of protein oxidative and related modifications and for identifying the targeted proteins. BIOLOGICAL SIGNIFICANCE: Accumulation of damaged macromolecules, including oxidatively damaged (carbonylated) proteins, is a hallmark of cellular and organismal aging. Since protein carbonyls are the most commonly used markers of protein oxidation, different methods have been developed for the detection and quantification of carbonylated proteins. The identification of these protein targets is of valuable interest in order to understand the mechanisms by which damaged proteins accumulate and potentially affect cellular functions during oxidative stress, cellular senescence and/or aging in vivo. The specificity of hydrazide derivatives to carbonyl groups and the presence of a wide range of functional groups coupled to the hydrazide, allowed the design of novel strategies for the detection and quantification of carbonylated proteins. Of note is the importance of fluorescent probes for monitoring carbonylated proteins. Proteomics approaches, i.e. fluorescent based 2D-gel electrophoresis and mass spectrometry methods, represent powerful tools for monitoring at the proteome level the extent of protein oxidative and related modifications and for identifying the targeted proteins. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.


Subject(s)
Oxidative Stress , Protein Carbonylation , Protein Processing, Post-Translational , Proteomics/methods , Animals , Humans
12.
Free Radic Biol Med ; 51(8): 1522-32, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21810466

ABSTRACT

Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing the protein expression profile as well as proteins preferentially oxidized upon hydrogen peroxide-induced oxidative stress. Fifteen proteins involved in the oxidative stress response were identified. Among them, protein spots identified as peroxiredoxins 1 and 6, glyceraldehyde-3-phosphate dehydrogenase, and α-enolase were shifted to a more acidic isoelectric point upon oxidative stress, indicating posttranslational modifications. Oxidized proteins were evidenced by immunodetection of derivatized carbonyl groups followed by identification by mass spectrometry. The carbonylated proteins identified are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways were focused on two distinct proteins: p53 for altered protein expression and huntingtin for increased protein carbonylation. This study emphasizes the importance of performing analysis addressing different aspects of the cellular proteome to have a more accurate view of their changes upon stress.


Subject(s)
Adult Stem Cells/metabolism , Myoblasts, Skeletal/metabolism , Oxidative Stress , Proteome/metabolism , Signal Transduction , Adult Stem Cells/pathology , Cell Line , Computer Simulation , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Huntingtin Protein , Hydrogen Peroxide/metabolism , Myoblasts, Skeletal/pathology , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Oxidation-Reduction , Peroxiredoxin VI/metabolism , Peroxiredoxins/metabolism , Phosphopyruvate Hydratase/metabolism , Protein Carbonylation , Protein Processing, Post-Translational , Tumor Suppressor Protein p53/metabolism
13.
J Biol Chem ; 286(40): 35007-19, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21768101

ABSTRACT

Alterations in the balance of cytoskeleton as well as energetic proteins are involved in the cardiac remodeling occurring in dilated cardiomyopathy (DCM). We used two-dimensional DIGE proteomics as a discovery approach to identify key molecular changes taking place in a temporally controlled model of DCM triggered by cardiomyocyte-specific serum response factor (SRF) knock-out in mice. We identified muscle creatine kinase (MCK) as the primary down-regulated protein followed by α-actin and α-tropomyosin down-regulation leading to a decrease of polymerized F-actin. The early response to these defects was an increase in the amount of desmin intermediate filaments and phosphorylation of the αB-crystallin chaperone. We found that αB-crystallin and desmin progressively lose their striated pattern and accumulate at the intercalated disk and the sarcolemma, respectively. We further show that desmin is a preferential target of advanced glycation end products (AGE) in mouse and human DCM. Inhibition of CK in cultured cardiomyocytes is sufficient to recapitulate both the actin depolymerization defect and the modification of desmin by AGE. Treatment with either cytochalasin D or glyoxal, a cellular AGE, indicated that both actin depolymerization and AGE contribute to desmin disorganization. Heat shock-induced phosphorylation of αB-crystallin provides a transient protection of desmin against glyoxal in a p38 MAPK-dependent manner. Our results show that the strong down-regulation of MCK activity contributes to F-actin instability and induces post-translational modification of αB-crystallin and desmin. Our results suggest that AGE may play an important role in DCM because they alter the organization of desmin filaments that normally support stress response and mitochondrial functions in cardiomyocytes.


Subject(s)
Actins/metabolism , Cardiomyopathy, Dilated/metabolism , Creatine Kinase, MM Form/deficiency , Creatine Kinase, MM Form/genetics , Desmin/metabolism , Glycation End Products, Advanced/metabolism , Alleles , Animals , Electrophoresis, Gel, Two-Dimensional , Heart Ventricles/pathology , Homozygote , Humans , Mass Spectrometry/methods , Mice , Models, Biological , Myocytes, Cardiac/cytology , Rats , Tropomyosin/metabolism , alpha-Crystallin B Chain/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...