Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 916: 170140, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38244618

ABSTRACT

Shallow lake ecosystems are particularly prone to disturbances such as pulsed dissolved organic matter (allochthonous-DOM; hereafter allo-DOM) loadings from catchments. However, the effects of allo-DOM with contrasting quality (in addition to quantity) on the planktonic communities of microbial loop are poorly understood. To determine the impact of different qualities of pulsed allo-DOM disturbance on the coupling between bacteria and ciliates, we conducted a mesocosm experiment with two different allo-DOM sources added to mesocosms in a single-pulse disturbance event: Alder tree leaf extract, a more labile (L) source and HuminFeed® (HF), a more recalcitrant source. Allo-DOM sources were used as separate treatments and in combination (HFL) relative to the control without allo-DOM additions (C). Our results indicate that the quality of allo-DOM was a major regulator of planktonic microbial community biomass and/or composition through which both bottom-up and top-down forces were involved. Bacteria biomass showed significant nonlinear responses in L and HFL with initial increases followed by decreases to pre-pulse conditions. Ciliate biomass was significantly higher in L compared to all other treatments. In terms of composition, bacterivore ciliate abundance was significantly higher in both L and HFL treatments, mainly driven by the bacterial biomass increase in the same treatments. GAMM models showed negative interaction between metazoan zooplankton biomass and ciliates, but only in the L treatment, indicating top-down control on ciliates. Ecosystem stability analyses revealed overperformance, high resilience and full recovery of bacteria in the HFL and L treatments, while ciliates showed significant shift in compositional stability in HFL and L with incomplete taxonomic recovery. Our study highlights the importance of allo-DOM quality shaping the response within the microbial loop not only through triggering different scenarios in biomass, but also the community composition, stability, and species interactions (top-down and bottom-up) in bacteria and plankton.


Subject(s)
Ecosystem , Lakes , Animals , Lakes/microbiology , Dissolved Organic Matter , Bacteria , Biomass , Plankton
2.
Genes (Basel) ; 13(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35741785

ABSTRACT

mtDNA sequences can be incorporated into the nuclear genome and produce nuclear mitochondrial fragments (NUMTs), which resemble mtDNA in their sequence but are transmitted biparentally, like the nuclear genome. NUMTs can be mistaken as real mtDNA and may lead to the erroneous impression that mtDNA is biparentally transmitted. Here, we report a case of mtDNA heteroplasmy in a Drosophila melanogaster DGRP line, in which the one haplotype was biparentally transmitted in an autosomal manner. Given the sequence identity of this haplotype with the mtDNA, the crossing experiments led to uncertainty about whether heteroplasmy was real or an artifact due to a NUMT. More specific experiments revealed that there is a large NUMT insertion in the X chromosome of a specific DGRP line, imitating biparental inheritance of mtDNA. Our result suggests that studies on mtDNA heteroplasmy and on mtDNA inheritance should first exclude the possibility of NUMT interference in their data.


Subject(s)
DNA, Mitochondrial , Drosophila melanogaster , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Drosophila melanogaster/genetics , Mitochondria/genetics , Sequence Analysis, DNA
3.
Bioessays ; 44(3): e2100216, 2022 03.
Article in English | MEDLINE | ID: mdl-34985776

ABSTRACT

In this paper, we identify the parallels and the differences between language and life as evolvable systems in pursuit of a framework that will investigate language change from the perspective of a general theory of evolution. Despite the consensus that languages change similarly to species, as reflected in the construction of language trees, the field has mainly applied biological techniques to specific problems of historical linguistics and has not systematically engaged in disentangling the basic concepts (population, reproductive unit, inheritance, etc.) and the core processes underlying evolutionary theory, namely mutation, selection, drift, and migration, as applied to language. We develop such a proposal. Treating language as an evolvable system places previous studies in a novel perspective, as it offers an elegant unifying framework that can accommodate current knowledge, utilize the rich theoretical framework of evolutionary biology, and synthesize many independent strands of inquiry, initiating a whole new research program.


Subject(s)
Heredity , Language , Biological Evolution , Inheritance Patterns , Linguistics/methods , Mutation
4.
Life (Basel) ; 11(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209862

ABSTRACT

Mitochondrial DNA (mtDNA) is predominately uniparentally transmitted. This results in organisms with a single type of mtDNA (homoplasmy), but two or more mtDNA haplotypes have been observed in low frequency in several species (heteroplasmy). In this review, we aim to highlight several aspects of heteroplasmy regarding its origin and its significance on mtDNA function and evolution, which has been progressively recognized in the last several years. Heteroplasmic organisms commonly occur through somatic mutations during an individual's lifetime. They also occur due to leakage of paternal mtDNA, which rarely happens during fertilization. Alternatively, heteroplasmy can be potentially inherited maternally if an egg is already heteroplasmic. Recent advances in sequencing techniques have increased the ability to detect and quantify heteroplasmy and have revealed that mitochondrial DNA copies in the nucleus (NUMTs) can imitate true heteroplasmy. Heteroplasmy can have significant evolutionary consequences on the survival of mtDNA from the accumulation of deleterious mutations and for its coevolution with the nuclear genome. Particularly in humans, heteroplasmy plays an important role in the emergence of mitochondrial diseases and determines the success of the mitochondrial replacement therapy, a recent method that has been developed to cure mitochondrial diseases.

5.
Sci Rep ; 10(1): 2599, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054873

ABSTRACT

Mitochondrial DNA (mtDNA) is maternally transmitted in animals and therefore, individuals are expected to have a single mtDNA haplotype (homoplasmy). Yet, heteroplasmic individuals have been observed in a large number of animal species. Heteroplasmy may emerge as a result of somatic mtDNA mutations, paternal leakage during fertilization or be inherited from a heteroplasmic mother. Understanding the causes of heteroplasmy could shed light into the evolution of mtDNA inheritance. In this study we examined heteroplasmy in progeny from heterospecific crosses of Drosophila for two consecutive generations. We studied the generation of heteroplasmy from paternal leakage and the maternal transmission of heteroplasmy. Our data reveal non-random patterns in the emergence and transmission of heteroplasmy and suggest that heteroplasmy depends on the family of origin.


Subject(s)
Chimera/genetics , DNA, Mitochondrial/genetics , Drosophila/genetics , Animals , Crosses, Genetic , Female , Haplotypes , Inheritance Patterns , Male , Maternal Inheritance , Mitochondria/genetics
6.
J Biol Res (Thessalon) ; 24: 2, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28164041

ABSTRACT

Mitochondrial DNA (mtDNA) has been studied intensely for "its own" merit. Its role for the function of the cell and the organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interaction with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, how these changes affect the information we have accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research.

7.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 4000-4002, 2016 11.
Article in English | MEDLINE | ID: mdl-25627314

ABSTRACT

Doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA) is an exceptional mode of mtDNA transmission, restricted so far to the class of bivalves. We searched for DUI outside bivalves using the apple snail Pomacea diffusa. It was an appropriate candidate to search for DUI for three reasons; it belongs to gastropods, which is the closest sister group to bivalves, it is gonochoristic and it has a strong sex bias in the progeny of different female individuals. These phenomena (gonochorism and sex-biased progeny) are also found in species with DUI. We searched for heteroplasmy in males and for high sequence divergence among mtDNA sequences obtained from male and female gonads. All sequences examined were identical. These data suggest that the mtDNA in P. diffusa is maternally transmitted and DUI remains an exclusive characteristic of bivalves.


Subject(s)
Genome, Mitochondrial , Inheritance Patterns , Snails/genetics , Animals , DNA, Mitochondrial/chemistry , Female , Male
8.
Ecol Evol ; 4(13): 2633-41, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25077015

ABSTRACT

Maternal transmission of mitochondrial DNA (mtDNA) in animals is thought to prevent the spread of selfish deleterious mtDNA mutations in the population. Various mechanisms have been evolved independently to prevent the entry of sperm mitochondria in the embryo. However, the increasing number of instances of paternal mtDNA leakage suggests that these mechanisms are not very effective. The destruction of sperm mitochondria in mammalian embryos is mediated by nuclear factors. Also, the destruction of paternal mitochondria in intraspecific crosses is more effective than in interspecific ones. These observations have led to the hypothesis that leakage of paternal mtDNA (and consequently mtDNA recombination owing to ensuing heteroplasmy) might be more common in inter- than in intraspecific crosses and that it should increase with phylogenetic distance of hybridizing species. We checked paternal leakage in inter- and intraspecific crosses in Drosophila and found little evidence for this hypothesis. In addition, we have observed a higher level of leakage among male than among female progeny from the same cross. This is the first report of sex-specific leakage of paternal mtDNA. It suggests that paternal mtDNA leakage might not be a stochastic result of an error-prone mechanism, but rather, it may be under complex genetic control.

9.
Genome Biol Evol ; 6(7): 1739-47, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25015235

ABSTRACT

Prophage sequences became an integral part of bacterial genomes as a consequence of coevolution, encoding fitness or virulence factors. Such roles have been attributed to phage-derived elements identified in several Gram-negative species: The type VI secretion system (T6SS), the R- and F-type pyocins, and the newly discovered Serratia entomophila antifeeding prophage (Afp), and the Photorhabdus luminescens virulence cassette (PVC). In this study, we provide evidence that remarkably conserved gene clusters, homologous to Afp/PVC, are not restricted to Gram-negative bacteria but are widespread throughout all prokaryotes including the Archaea. Even though they are phylogenetically closer to pyocins, they share key characteristics in common with the T6SS, such as the use of a chaperon-type AAA+ ATPase and the lack of a host cell lysis mechanism. We thus suggest that Afp/PVC-like elements could be classified as phage-like-protein-translocation structures (PLTSs) rather than as pyocins. The reconstruction of phylogeny and the conserved gene content suggest that the diversification of prophage sequences to PLTS occurred in bacteria early in evolution and only once, but PLTS clusters have been horizontally transferred to some of the bacterial lineages and to the Archaea. The adaptation of this element in such a wide host range is suggestive of its versatile use in prokaryotes.


Subject(s)
Bacteriophages/genetics , Genome, Archaeal/genetics , Genome, Bacterial/genetics , Genomics , Phylogeny , Conserved Sequence , Evolution, Molecular
10.
Philos Trans R Soc Lond B Biol Sci ; 369(1646): 20130443, 2014 Jul 05.
Article in English | MEDLINE | ID: mdl-24864313

ABSTRACT

Fundamental biological processes hinge on coordinated interactions between genes spanning two obligate genomes--mitochondrial and nuclear. These interactions are key to complex life, and allelic variation that accumulates and persists at the loci embroiled in such intergenomic interactions should therefore be subjected to intense selection to maintain integrity of the mitochondrial electron transport system. Here, we compile evidence that suggests that mitochondrial-nuclear (mitonuclear) allelic interactions are evolutionarily significant modulators of the expression of key health-related and life-history phenotypes, across several biological scales--within species (intra- and interpopulational) and between species. We then introduce a new frontier for the study of mitonuclear interactions--those that occur within individuals, and are fuelled by the mtDNA heteroplasmy and the existence of nuclear-encoded mitochondrial gene duplicates and isoforms. Empirical evidence supports the idea of high-resolution tissue- and environment-specific modulation of intraindividual mitonuclear interactions. Predicting the penetrance, severity and expression patterns of mtDNA-induced mitochondrial diseases remains a conundrum. We contend that a deeper understanding of the dynamics and ramifications of mitonuclear interactions, across all biological levels, will provide key insights that tangibly advance our understanding, not only of core evolutionary processes, but also of the complex genetics underlying human mitochondrial disease.


Subject(s)
Biological Evolution , DNA, Mitochondrial/genetics , Genetic Variation/genetics , Mitochondria/genetics , Polymorphism, Genetic/genetics , DNA, Mitochondrial/physiology , Genetic Variation/physiology , Genotype , Humans , Mitochondria/physiology , Mitochondrial Diseases/genetics , Phenotype , Polymorphism, Genetic/physiology
11.
Appl Environ Microbiol ; 80(13): 3784-92, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24747897

ABSTRACT

A common source of disturbance for coastal aquatic habitats is nutrient enrichment through anthropogenic activities. Although the water column bacterioplankton communities in these environments have been characterized in some cases, changes in α-diversity and/or the abundances of specific taxonomic groups across enriched habitats remain unclear. Here, we investigated the bacterial community changes at three different nutrient-enriched and adjacent undisturbed habitats along the north coast of Crete, Greece: a fish farm, a closed bay within a town with low water renewal rates, and a city port where the level of nutrient enrichment and the trophic status of the habitat were different. Even though changes in α-diversity were different at each site, we observed across the sites a common change pattern accounting for most of the community variation for five of the most abundant bacterial groups: a decrease in the abundance of the Pelagibacteraceae and SAR86 and an increase in the abundance of the Alteromonadaceae, Rhodobacteraceae, and Cryomorphaceae in the impacted sites. The abundances of the groups that increased and decreased in the impacted sites were significantly correlated (positively and negatively, respectively) with the total heterotrophic bacterial counts and the concentrations of dissolved organic carbon and/or dissolved nitrogen and chlorophyll α, indicating that the common change pattern was associated with nutrient enrichment. Our results provide an in situ indication concerning the association of specific bacterioplankton groups with nutrient enrichment. These groups could potentially be used as indicators for nutrient enrichment if the pattern is confirmed over a broader spatial and temporal scale by future studies.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biota , Ecosystem , Seawater/microbiology , Chlorophyll/analysis , Chlorophyll A , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Greece , Molecular Sequence Data , Nitrogen Compounds/analysis , Organic Chemicals/analysis , Seawater/chemistry , Sequence Analysis, DNA
12.
Genome Biol ; 12(11): R118, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22118156

ABSTRACT

BACKGROUND: The relationship between DNA sequence and encoded information is still an unsolved puzzle. The number of protein-coding genes in higher eukaryotes identified by genome projects is lower than was expected, while a considerable amount of putatively non-coding transcription has been detected. Functional small open reading frames (smORFs) are known to exist in several organisms. However, coding sequence detection methods are biased against detecting such very short open reading frames. Thus, a substantial number of non-canonical coding regions encoding short peptides might await characterization. RESULTS: Using bio-informatics methods, we have searched for smORFs of less than 100 amino acids in the putatively non-coding euchromatic DNA of Drosophila melanogaster, and initially identified nearly 600,000 of them. We have studied the pattern of conservation of these smORFs as coding entities between D. melanogaster and Drosophila pseudoobscura, their presence in syntenic and in transcribed regions of the genome, and their ratio of conservative versus non-conservative nucleotide changes. For negative controls, we compared the results with those obtained using random short sequences, while a positive control was provided by smORFs validated by proteomics data. CONCLUSIONS: The combination of these analyses led us to postulate the existence of at least 401 functional smORFs in Drosophila, with the possibility that as many as 4,561 such functional smORFs may exist.


Subject(s)
Drosophila melanogaster/genetics , Drosophila/genetics , Genome, Insect , Open Reading Frames/genetics , Synteny/genetics , Algorithms , Animals , Base Sequence , Computational Biology/methods , Conserved Sequence , DNA/genetics , Genetic Variation , Molecular Sequence Data
13.
Mol Biol Evol ; 28(6): 1847-59, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21220759

ABSTRACT

Homologous recombination is restricted to sequences of low divergence. This is attributed to the mismatch repairing system (MMR), which does not allow recombination between sequences that are highly divergent. This acts as a safeguard against recombination between nonhomologous sequences that could result in genome imbalance. Here, we report recombination between maternal and paternal mitochondrial genomes of the sea mussel, whose sequences differ by >20%. We propose that the strict maternal inheritance of the animal mitochondrial DNA and the ensuing homoplasmy has relieved the MMR system of the animal mitochondrion from the pressure to tolerate recombination only among sequences with a high degree of similarity.


Subject(s)
Bivalvia/genetics , DNA, Mitochondrial/genetics , Genome/genetics , Recombination, Genetic , Animals , Base Sequence , Female , Male , Molecular Sequence Data , Restriction Mapping , Sequence Alignment
14.
PLoS Biol ; 7(2): e1000027, 2009 Feb 03.
Article in English | MEDLINE | ID: mdl-19192947

ABSTRACT

The mutation rate is known to vary between adjacent sites within the human genome as a consequence of context, the most well-studied example being the influence of CpG dinucelotides. We investigated whether there is additional variation by testing whether there is an excess of sites at which both humans and chimpanzees have a single-nucleotide polymorphism (SNP). We found a highly significant excess of such sites, and we demonstrated that this excess is not due to neighbouring nucleotide effects, ancestral polymorphism, or natural selection. We therefore infer that there is cryptic variation in the mutation rate. However, although this variation in the mutation rate is not associated with the adjacent nucleotides, we show that there are highly nonrandom patterns of nucleotides that extend approximately 80 base pairs on either side of sites with coincident SNPs, suggesting that there are extensive and complex context effects. Finally, we estimate the level of variation needed to produce the excess of coincident SNPs and show that there is a similar, or higher, level of variation in the mutation rate associated with this cryptic process than there is associated with adjacent nucleotides, including the CpG effect. We conclude that there is substantial variation in the mutation that has, until now, been hidden from view.


Subject(s)
Genome, Human , Mutation , Nucleotides/genetics , Polymorphism, Single Nucleotide , Animals , Base Pairing , Evolution, Molecular , Genetic Variation , Humans , Pan troglodytes/genetics , Sequence Alignment , Sequence Analysis, DNA
15.
J Mol Evol ; 67(3): 291-300, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18696026

ABSTRACT

Recent analyses have shown that there is a large excess of perfect inverted repeats in many prokaryotic genomes but not in eukaryotic ones. This difference could be due to a genuine difference between prokaryotes and eukaryotes or to differences in the methods and types of data analyzed--full genome versus protein coding sequences. We used simulations to show that the method used previously tends to underestimate the expected number of inverted repeats. However, this bias is not large and cannot explain the excess of inverted repeats observed in real data. In contrast, our method is unbiased. When both methods are applied to bacterial protein coding sequences they both detect an excess of inverted repeats, which is much lower than previously reported in whole prokaryotic genomes. This suggests that the reported large excess of inverted repeats is due to repeats found in intergenic regions. These repeats could be due to transcription factor binding sites, or other types of repetitive DNA, on opposite strands of the DNA sequence. In contrast, the smaller, but significant, excess of inverted repeats that we report in protein coding sequences may be due to sequence-directed mutagenesis (SDM). SDM is a process where one copy of a small, imperfect, inverted repeat corrects the other copy via strand misalignment, resulting in a perfect repeat and a series of mutations. We show by simulation that even very low levels of SDM, relative to the rate of point mutation, can generate a substantial excess of inverted repeats.


Subject(s)
Prokaryotic Cells/metabolism , Repetitive Sequences, Nucleic Acid/genetics , Computer Simulation , Genome/genetics , Mutagenesis, Site-Directed , Point Mutation/genetics
16.
J Mol Evol ; 64(1): 1-3, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17160648

ABSTRACT

Sequence directed mutagenesis is a mechanism by which imperfect repeats "repair" each other to become perfect, generating mutations. This process is known to be prevalent in prokaryotes and it has been implicated in several human genetic diseases. Here we test whether sequence directed mutagenesis occurs in the protein coding sequences of eukaryotes using extensive DNA sequence data from humans, mice, Drosophila, nematodes, yeast, and Arabidopsis. Using two tests we find little evidence of sequence directed mutagenesis. We conclude that sequence directed mutagenesis is not prevalent in eukaryotes and that the examples of human diseases, apparently caused by sequence directed mutagenesis, are probably coincidental.


Subject(s)
Eukaryotic Cells/physiology , Models, Genetic , Mutagenesis , Animals , Arabidopsis/genetics , Gene Order , Genome, Human , Humans , Mice , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...