Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Ther Targets ; 26(9): 811-822, 2022 09.
Article in English | MEDLINE | ID: mdl-36424892

ABSTRACT

INTRODUCTION: The Helping to End Addiction Long-termSM Initiative supports a wide range of programs to develop new or improved prevention and opioid addiction treatment strategies. An essential component of this effort is to accelerate development of non-opioid pain therapeutics. In all fields of medicine, therapeutics development is an arduous process and late-stage translational efforts such as clinical trials to validate targets are particularly complex and costly. While there are plentiful novel targets for pain treatment, successful clinical validation is rare. It is therefore crucial to develop processes whereby therapeutic targets can be reasonably 'de-risked' prior to substantial late-stage validation efforts. Such rigorous validation of novel therapeutic targets in the preclinical space will give potential private sector partners the confidence to pursue clinical validation of promising therapeutic concepts and compounds. AREAS COVERED: In 2020, the National Institutes of Health (NIH) held the Target Validation for Non-Addictive Therapeutics Development for Pain workshop to gather insights from key opinion leaders in academia, industry, and venture-financing. EXPERT OPINION: The result was a roadmap for pain target validation focusing on three modalities: 1) human evidence; 2) assay development in vitro; 3) assay development in vivo.


Subject(s)
Opioid-Related Disorders , Pain , Humans , Pain/drug therapy , Opioid-Related Disorders/drug therapy
2.
J Biomol Screen ; 19(2): 205-14, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24088370

ABSTRACT

Alterations in synaptic transmission have been implicated in a number of psychiatric and neurological disorders. The discovery of small-molecule modulators of proteins that regulate neurotransmission represents a novel therapeutic strategy for these diseases. However, high-throughput screening (HTS) approaches in primary neurons have been limited by challenges in preparing and applying primary neuronal cultures under conditions required for generating sufficiently robust and sensitive HTS assays. Synapsin I is an abundant presynaptic protein that plays a critical role in neurotransmission through tethering synaptic vesicles to the actin cytoskeleton. It has several phosphorylation sites that regulate its modulation of synaptic vesicle trafficking and, therefore, the efficacy of synaptic transmission. Here, we describe the development of a rapid, sensitive, and homogeneous assay to detect phospho-synapsin I (pSYN1) in primary cortical neurons in 384-well plates using AlphaScreen technology. From results of a pilot screening campaign, we show that the assay can identify compounds that modulate synapsin I phosphorylation via multiple signaling pathways. The implementation of the AlphaScreen pSYN1 assay and future development of additional primary neuronal HTS assays provides an attractive approach for discovery of novel classes of therapeutic candidates for a variety of CNS disorders.


Subject(s)
Brain/pathology , Neurons/metabolism , Synapsins/isolation & purification , Synaptic Transmission/genetics , Brain/metabolism , Cells, Cultured , High-Throughput Screening Assays , Humans , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Neurons/pathology , Phosphorylation , Signal Transduction , Synapsins/metabolism , Synaptic Vesicles/metabolism
3.
J Neurosci ; 33(27): 10938-49, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23825400

ABSTRACT

Working memory is an essential component of higher cognitive function, and its impairment is a core symptom of multiple CNS disorders, including schizophrenia. Neuronal mechanisms supporting working memory under normal conditions have been described and include persistent, high-frequency activity of prefrontal cortical neurons. However, little is known about the molecular and cellular basis of working memory dysfunction in the context of neuropsychiatric disorders. To elucidate synaptic and neuronal mechanisms of working memory dysfunction, we have performed a comprehensive analysis of a mouse model of schizophrenia, the forebrain-specific calcineurin knock-out mouse. Biochemical analyses of cortical tissue from these mice revealed a pronounced hyperphosphorylation of synaptic vesicle cycling proteins known to be necessary for high-frequency synaptic transmission. Examination of the synaptic vesicle cycle in calcineurin-deficient neurons demonstrated an impairment of vesicle release enhancement during periods of intense stimulation. Moreover, brain slice and in vivo electrophysiological analyses showed that loss of calcineurin leads to a gene dose-dependent disruption of high-frequency synaptic transmission and network activity in the PFC, correlating with selective working memory impairment. Finally, we showed that levels of dynamin I, a key presynaptic protein and calcineurin substrate, are significantly reduced in prefrontal cortical samples from schizophrenia patients, extending the disease relevance of our findings. Our data provide support for a model in which impaired synaptic vesicle cycling represents a critical node for disease pathologies underlying the cognitive deficits in schizophrenia.


Subject(s)
Calcineurin/deficiency , Memory Disorders/metabolism , Memory, Short-Term/physiology , Prefrontal Cortex/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Adult , Animals , Calcineurin/genetics , Female , Humans , Male , Memory Disorders/genetics , Mice , Mice, Knockout , Middle Aged , Nerve Net/metabolism , Organ Culture Techniques , Synaptic Vesicles/genetics
4.
Biol Psychiatry ; 64(12): 1077-87, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18973876

ABSTRACT

BACKGROUND: Genes associated with energy metabolism are decreased in schizophrenia brain and human and rodent diabetic skeletal muscle. These and other similarities between diabetes and schizophrenia suggest that an insulin signaling deficit may underlie schizophrenia. We determined with human SH-SY5Y neuroblastoma and astrocyte cell lines whether insulin or other molecules could modulate genes opposite to their change reported in schizophrenia brain. METHODS: Both cell lines were treated with insulin, insulin-like growth factor (IGF)-1, IGF-2, or brain-derived neurotrophic factor (BDNF). Genes whose expression was found with microarrays to be changed by insulin in a reciprocal manner to their change in schizophrenia were used in a 16-gene miniarray to identify small molecules that might mimic insulin. RESULTS: Insulin phosphorylated its receptor in the neuroblastoma cells but not in astrocytes and, like IGF-1, increased ERK1/2 and Akt phosphorylation. Insulin and IGF-1 increased the expression of genes decreased in schizophrenia, including those involved in mitochondrial functions, glucose and energy metabolism, hydrogen ion transport, and synaptic function. These gene effects were confirmed and shown to be dose related with the 16-gene miniarrays. Most of 1940 pharmacologically unique compounds failed to alter gene expression, with the exception of muscarinic agonists, which mimicked insulin and IGF-1, and which were blocked by the muscarinic antagonists atropine and telenzepine. CONCLUSIONS: Stimulation of muscarinic and insulin/IGF-1 receptors alter genes associated with metabolic and synaptic functions in a manner reciprocal to their changes in schizophrenia. Pharmacologic activation of these receptors may normalize genomic alterations in schizophrenia and better address root causes of this disease.


Subject(s)
Gene Expression/drug effects , Insulin-Like Growth Factor I/pharmacology , Insulin/pharmacology , Muscarinic Agonists/pharmacology , Schizophrenia/genetics , Adult , Bipolar Disorder/pathology , Brain , Case-Control Studies , Cell Line, Tumor , Cerebral Cortex , Female , Gene Expression Profiling/methods , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Neuroblastoma , Oligonucleotide Array Sequence Analysis/methods , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Schizophrenia/pathology
5.
J Neurochem ; 91(1): 238-51, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15379904

ABSTRACT

Valproate, an anticonvulsant drug used to treat bipolar disorder, was studied for its ability to promote neurogenesis from embryonic rat cortical or striatal primordial stem cells. Six days of valproate exposure increased by up to fivefold the number and percentage of tubulin beta III-immunopositive neurons, increased neurite outgrowth, and decreased by fivefold the number of astrocytes without changing the number of cells. Valproate also promoted neuronal differentiation in human fetal forebrain stem cell cultures. The neurogenic effects of valproate on rat stem cells exceeded those obtained with the neurotrophins brain-derived growth factor (BDNF) or NT-3, and slightly exceeded the effects obtained with another mood stabilizer, lithium. No effect was observed with carbamazepine. Most of the newly formed neurons were GABAergic, as shown by 10-fold increases in neurons that immunostained for GABA and the GABA-synthesizing enzyme GAD65/67. Double immunostaining for bromodeoxyuridine and tubulin beta III showed that valproate increased by four- to fivefold the proliferation of neuronal progenitors derived from rat stem cells and increased cyclin D2 expression. Valproate also regulated the expression of survival genes, Bad and Bcl-2, at different times of treatment. The expression of prostaglandin E synthase, analyzed by quantitative RT-PCR, was increased by ninefold as early as 6 h into treatment by valproate. The enhancement of GABAergic neuron numbers, neurite outgrowth, and phenotypic expression via increases in the neuronal differentiation of neural stem cell may contribute to the therapeutic effects of valproate in the treatment of bipolar disorder.


Subject(s)
Neurons/drug effects , Prosencephalon/cytology , Stem Cells/drug effects , Valproic Acid/pharmacology , gamma-Aminobutyric Acid/metabolism , Animals , Astrocytes/drug effects , Astrocytes/physiology , Blotting, Western/methods , Bromodeoxyuridine/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Count/methods , Cell Differentiation/drug effects , Cells, Cultured , Cyclin D2 , Cyclins/metabolism , Dose-Response Relationship, Drug , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Glutamate Decarboxylase/metabolism , Histones/metabolism , Humans , Hydroxamic Acids/pharmacology , Immunohistochemistry/methods , Interleukin-6/pharmacology , Leukemia Inhibitory Factor , Lithium Chloride/pharmacology , Neurons/physiology , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/biosynthesis , Rats , Reverse Transcriptase Polymerase Chain Reaction/methods , Stem Cells/physiology , Time Factors , Trans-Activators/genetics , Trans-Activators/metabolism , Tretinoin/pharmacology , Tubulin/metabolism , bcl-Associated Death Protein
6.
J Neurosci Methods ; 138(1-2): 173-88, 2004 Sep 30.
Article in English | MEDLINE | ID: mdl-15325126

ABSTRACT

The gene expression profiles of human postmortem parietal and prefrontal cortex samples of normal controls and patients with bipolar disease, or human neuroblastoma flat (NBFL) cells treated with the mood-stabilizing drug, valproate, were used to compare the performance of Affymetrix oligonucleotide U133A GeneChips and Agilent Human 1 cDNA microarrays. Among those genes represented on both platforms, the oligo array identified 26-53% more differentially expressed genes compared to the cDNA array in the three experiments, when identical fold change and t-test criteria were applied. The increased sensitivity was primarily the result of more robust fold changes measured by the oligonucleotide system. Essentially all gene changes overlapping between the two platforms were co-directional, and ranged from 4 to 19% depending upon the amount of biological variability within and between the comparison groups. Q-PCR validation rates were virtually identical for the two platforms, with 23-24% validation in the prefrontal cortex experiment, and 56% for both platforms in the cell culture experiment. Validated genes included dopa decarboxylase, dopamine beta-hydroxylase, and dihydropyrimidinase-related protein 3, which were decreased in NBFL cells exposed to valproate, and spinocerebellar ataxia 7, which was increased in bipolar disease. The modest overlap but similar validation rates show that each microarray system identifies a unique set of differentially expressed genes, and thus the greatest information is obtained from the use of both platforms.


Subject(s)
Bipolar Disorder/diagnosis , Gene Expression/drug effects , Oligonucleotide Array Sequence Analysis/methods , Parietal Lobe/metabolism , Valproic Acid/pharmacology , Adult , Aged , Bipolar Disorder/genetics , Enzyme Inhibitors/pharmacology , Female , Gene Expression/physiology , Humans , Male , Middle Aged , Polymerase Chain Reaction/methods , Postmortem Changes , RNA, Messenger/metabolism , Reproducibility of Results
7.
J Neurosci ; 24(11): 2667-77, 2004 Mar 17.
Article in English | MEDLINE | ID: mdl-15028759

ABSTRACT

Electroconvulsive therapy (ECT) remains the treatment of choice for drug-resistant patients with depressive disorders, yet the mechanism for its efficacy remains unknown. Gene transcription changes were measured in the frontal cortex and hippocampus of rats subjected to sham seizures or to 1 or 10 electroconvulsive seizures (ECS), a model of ECT. Among the 3500-4400 RNA sequences detected in each sample, ECS increased by 1.5- to 11-fold or decreased by at least 34% the expression of 120 unique genes. The hippocampus produced more than three times the number of gene changes seen in the cortex, and many hippocampal gene changes persisted with chronic ECS, unlike in the cortex. Among the 120 genes, 77 have not been reported in previous studies of ECS or seizure responses, and 39 were confirmed among 59 studied by quantitative real time PCR. Another 19 genes, 10 previously unreported, changed by <1.5-fold but with very high significance. Multiple genes were identified within distinct pathways, including the BDNF-MAP kinase-cAMP-cAMP response element-binding protein pathway (15 genes), the arachidonic acid pathway (5 genes), and more than 10 genes in each of the immediate-early gene, neurogenesis, and exercise response gene groups. Neurogenesis, neurite outgrowth, and neuronal plasticity associated with BDNF, glutamate, and cAMP-protein kinase A signaling pathways may mediate the antidepressant effects of ECT in humans. These genes, and others that increase only with chronic ECS such as neuropeptide Y and thyrotropin-releasing hormone, may provide novel ways to select drugs for the treatment of depression and mimic the rapid effectiveness of ECT.


Subject(s)
Electroshock , Frontal Lobe/metabolism , Gene Expression Regulation/physiology , Hippocampus/metabolism , Nerve Growth Factors/metabolism , Signal Transduction/physiology , Animals , Behavior, Animal/physiology , Gene Expression Profiling , Male , Models, Animal , Oligonucleotide Array Sequence Analysis , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...