Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chromosoma ; 101(9): 549-56, 1992 Aug.
Article in English | MEDLINE | ID: mdl-1521499

ABSTRACT

The sphere organelles (spheres) of Xenopus and other amphibian oocytes are known to contain small nuclear ribonucleoprotein particles (snRNPs) and have been suggested to play a role in snRNP complex assembly. Coupled with the similarities that exist between spheres and nucleoli and the quantitative and kinetic aspects of snRNA synthesis in the Xenopus oocyte, we have investigated whether or not the U snRNA encoding genes are amplified in Xenopus oogenesis, the spheres being possible sites for the location of such extrachromosomal gene copies. By applying a number of quantitative nucleic acid hybridization procedures to both total and fractionated oocyte and somatic DNA, employing both homologous and heterologous U snRNA gene probes and suitable amplification and non-amplification control probes, we show that the U snRNA genes do not undergo any major amplification in Xenopus oogenesis. Therefore, the analogy between the sphere organelles and nucleoli appears to be limited. The role of the spheres and their relationship to other snRNP containing structures, specifically B snurposomes, and the sphere organizer loci remains obscure.


Subject(s)
Gene Amplification , Oocytes/metabolism , Organelles/metabolism , RNA, Small Nuclear/genetics , Animals , Base Sequence , Blotting, Southern , Centrifugation, Density Gradient , DNA , Humans , Molecular Sequence Data , Oligonucleotide Probes , Oocytes/ultrastructure , Xenopus
2.
EMBO J ; 5(8): 2009-13, 1986 Aug.
Article in English | MEDLINE | ID: mdl-3019677

ABSTRACT

The Escherichia coli mismatch repair system greatly improves DNA replication fidelity by repairing single mispaired and unpaired bases in newly synthesized DNA strands. Transient undermethylation of the GATC sequences makes the newly synthesized strands susceptible to mismatch repair enzymes. The role of unmethylated GATC sequences in mismatch repair was tested in transfection experiments with heteroduplex DNA of phage phi 174 without any GATC sequence or with two GATC sequences, containing in addition either a G:T mismatch (Eam+/Eam3) or a G:A mismatch (Bam+/Bam16). It appears that only DNA containing GATC sequences is subject to efficient mismatch repair dependent on E. coli mutH, mutL, mutS and mutU genes; however, also in the absence of GATC sequence some mut-dependent mismatch repair can be observed. These observations suggest that the mismatch repair enzymes recognize both the mismatch and the unmethylated GATC sequence in DNA over long distances. The presence of GATC sequence(s) in the substrate appears to be required for full mismatch repair activity and not only for its strand specificity according to the GATC methylation state.


Subject(s)
DNA Repair , DNA Replication , Escherichia coli/genetics , Bacteriophage phi X 174/genetics , Base Sequence , DNA Restriction Enzymes , DNA, Bacterial/genetics , Nucleic Acid Heteroduplexes/genetics , Transfection
3.
Biochimie ; 67(7-8): 745-52, 1985.
Article in English | MEDLINE | ID: mdl-2935198

ABSTRACT

Bacteriophage lambda and phi X 174 DNAs, carrying sequenced mutations, have been used to construct in vitro defined species of heteroduplex DNA. Such heteroduplex DNAs were introduced by transfection, as single copies, into E. coli host cells. The progeny of individual heteroduplex molecules from each infective center was analyzed. The effect of the presence of GATC sequences (phi X 174 system) and of their methylation (lambda system) was tested. The following conclusions can be drawn: some mismatched base pairs trigger the process of mismatch repair, causing a localized strand-to-strand information transfer in heteroduplex DNA: transition mismatches G:T and A:C are efficiently repaired, whereas the six transversion mismatches are not always readily recognized and/or repaired. The recognition of transversion mismatches appears to depend on the neighbouring nucleotide sequence; single unpaired bases (frameshift mutation "mismatches") are recognized and repaired, some equally efficiently on both strands (longer and shorter), some more efficiently on the shorter (-1) strand; large non-homologies (about 800 bases) are not repaired by the Mut H, L, S, U system, but some other process repairs the non-homology with a relatively low efficiency; full methylation of GATC sequences inhibits mismatch repair on the methylated strand: this is the chemical basis of strand discrimination (old/new) in mismatch correction; unmethylated GATC sequences appear to improve mismatch repair of a G:T mismatch in phi X 174 DNA, but there may be some residual mismatch repair in GATC-free phi X 174, at least for some mismatches.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Bacteriophage lambda/genetics , Bacteriophage phi X 174/genetics , Base Composition , DNA, Bacterial/genetics , Escherichia coli/genetics , Nucleic Acid Heteroduplexes/genetics , Base Sequence , DNA Replication , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...