Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Science ; 323(5918): 1193-7, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19251624

ABSTRACT

The development of electronic devices at the single-molecule scale requires detailed understanding of charge transport through individual molecular wires. To characterize the electrical conductance, it is necessary to vary the length of a single molecular wire, contacted to two electrodes, in a controlled way. Such studies usually determine the conductance of a certain molecular species with one specific length. We measure the conductance and mechanical characteristics of a single polyfluorene wire by pulling it up from a Au(111) surface with the tip of a scanning tunneling microscope, thus continuously changing its length up to more than 20 nanometers. The conductance curves show not only an exponential decay but also characteristic oscillations as one molecular unit after another is detached from the surface during stretching.

3.
Nat Nanotechnol ; 2(11): 687-91, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18654406

ABSTRACT

The construction of electronic devices from single molecular building blocks, which possess certain functions such as switching or rectifying and are connected by atomic-scale wires on a supporting surface, is an essential goal of molecular electronics. A key challenge is the controlled assembly of molecules into desired architectures by strong, that is, covalent, intermolecular connections, enabling efficient electron transport between the molecules and providing high stability. However, no molecular networks on surfaces 'locked' by covalent interactions have been reported so far. Here, we show that such covalently bound molecular nanostructures can be formed on a gold surface upon thermal activation of porphyrin building blocks and their subsequent chemical reaction at predefined connection points. We demonstrate that the topology of these nanostructures can be precisely engineered by controlling the chemical structure of the building blocks. Our results represent a versatile route for future bottom-up construction of sophisticated electronic circuits and devices, based on individual functionalized molecules.


Subject(s)
Crystallization/methods , Gold/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Porphyrins/chemistry , Chemistry/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...