Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(48): 43381-43389, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506212

ABSTRACT

The Dawson-type sulfate polyoxometalate (POM) [S2W18O62]4- has successfully been entrapped in polypyrrole (PPy) films on glassy carbon electrode (GCE) surfaces through pyrrole electropolymerization. Films of varying POM loadings (i.e., thickness) were grown by chronocoulometry. Film-coated electrodes were then characterized using voltammetry, revealing POM surface coverages ranging from 1.9 to 11.7 × 10-9 mol·cm-2, and were stable over 100 redox cycles. Typical film morphology and composition were revealed to be porous using atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and the effects of this porosity on POM redox activity were probed using AC impedance. The hybrid organic-inorganic films exhibited a good electrocatalytic response toward the reduction of iodate with a sensitivity of 0.769 µA·cm-2·µM-1.

2.
Polymers (Basel) ; 14(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566882

ABSTRACT

Polyimides (PI) are a class of dielectric polymer used in a wide range of electronics and electrical engineering applications from low-voltage microelectronics to high voltage isolation. They are well appreciated because of their excellent thermal, electrical, and mechanical properties, each of which need to be optimized uniquely depending on the end application. For example, for high-voltage applications, the final polymer breakdown field and dielectric properties must be optimized, both of which are dependent on the curing process and the final physico-chemical properties of PI. The majority of studies to date have focused on a limited set of properties of the polymer and have analyzed the effect of curing from a physicochemical-, mechanical- or electrical-centric viewpoint. This paper seeks to overcome this, unifying all of these characterizations in the same study to accurately describe the universal effect of the cure temperature on the properties of PI and at an industrial processing scale. This paper reports the widest-ranging study of its kind on the effect that cure temperature has on the physico-chemical, mechanical, thermal and electrical properties of polyimide, specifically poly (pyromellitic dianhydride-co-4, 4'-oxydianiline) (PMDA/ODA). The optimization of the cure temperature is accurately studied not only regarding the degree of imidization (DOI), but also considering the entire physical properties. Particularly, the analysis elucidates the key role of the charge-transfer complex (CTC) on these properties. The results show that while the thermal and mechanical properties improve with both DOI and CTC formation, the electrical properties, particularly at high field conditions, show an antagonistic behavior enhancing with increasing DOI while degrading at higher temperatures as the CTC formation increases. The electrical characterization at low field presents an enhancement of the final PI properties likely due to the DOI. On the contrary, at high electric field, the conductivity results show an improvement at an intermediate temperature emphasizing an ideal compromise between a high DOI and PI chain packing when the thermal imidization process is performed over this equilibrium. This balance enables maximum performance to be obtained for the PI film with optimized electrical properties and, overall, optimal thermal and mechanical properties are achieved.

3.
J Am Chem Soc ; 144(11): 4853-4862, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35262332

ABSTRACT

Conducting polymers (CPs) find applications in energy conversion and storage, sensors, and biomedical technologies once processed into thin films. Hydrophobic CPs, like poly(3,4-ethylenedioxythiophene) (PEDOT), typically require surfactant additives, such as poly(styrenesulfonate) (PSS), to aid their aqueous processability as thin films. However, excess PSS diminishes CP electrochemical performance, biocompatibility, and device stability. Here, we report the electrosynthesis of PEDOT thin films at a polarized liquid|liquid interface, a method nonreliant on conductive solid substrates that produces free-standing, additive-free, biocompatible, easily transferrable, and scalable 2D PEDOT thin films of any shape or size in a single step at ambient conditions. Electrochemical control of thin film nucleation and growth at the polarized liquid|liquid interface allows control over the morphology, transitioning from 2D (flat on both sides with a thickness of <50 nm) to "Janus" 3D (with flat and rough sides, each showing distinct physical properties, and a thickness of >850 nm) films. The PEDOT thin films were p-doped (approaching the theoretical limit), showed high π-π conjugation, were processed directly as thin films without insulating PSS and were thus highly conductive without post-processing. This work demonstrates that interfacial electrosynthesis directly produces PEDOT thin films with distinctive molecular architectures inaccessible in bulk solution or at solid electrode-electrolyte interfaces and emergent properties that facilitate technological advances. In this regard, we demonstrate the PEDOT thin film's superior biocompatibility as scaffolds for cellular growth, opening immediate applications in organic electrochemical transistor (OECT) devices for monitoring cell behavior over extended time periods, bioscaffolds, and medical devices, without needing physiologically unstable and poorly biocompatible PSS.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Polymers , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electric Conductivity , Electrodes , Polymers/chemistry
4.
Biosensors (Basel) ; 11(8)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34436051

ABSTRACT

We report the microfabrication and characterization of gold microband electrodes on silicon using standard microfabrication methods, i.e., lithography and etching techniques. A two-step electrodeposition process was carried out using the on-chip platinum reference and gold counter electrodes, thus incorporating glucose oxidase onto a platinum-modified, gold microband electrode with an o-phenylenediamine and ß-cyclodextrin mixture. The as-fabricated electrodes were studied using optical microscopy, scanning electron microscopy, and atomic force microscopy. The two-step electrodeposition process was conducted in low sample volumes (50 µL) of both solutions required for biosensor construction. Cyclic voltammetry and electrochemical impedance spectroscopy were utilised for electrochemical characterization at each stage of the deposition process. The enzymatic-based microband biosensor demonstrated a linear response to glucose from 2.5-15 mM, using both linear sweep voltammetry and chronoamperometric measurements in buffer-based solutions. The biosensor performance was examined in 30 µL volumes of fetal bovine serum. Whilst a reduction in the sensor sensitivity was evident within 100% serum samples (compared to buffer media), the sensor demonstrated linear glucose detection with increasing glucose concentrations (5-17 mM).


Subject(s)
Biosensing Techniques , Glucose Oxidase , Electrodes , Enzymes, Immobilized , Glucose , Gold , Platinum
5.
Foods ; 9(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942522

ABSTRACT

The α-relaxation temperatures (Tα), derived from the storage and loss moduli using dynamic mechanical analysis (DMA), were compared to methods for stickiness and glass transition determination for a selection of model whey protein concentrate (WPC) powders with varying protein contents. Glass transition temperatures (Tg) were determined using differential scanning calorimetry (DSC), and stickiness behavior was characterized using a fluidization technique. For the lower protein powders (WPC 20 and 35), the mechanical Tα determined from the storage modulus of the DMA (Tα onset) were in good agreement with the fluidization results, whereas for higher protein powders (WPC 50 and 65), the fluidization results compared better to the loss modulus results of the DMA (Tα peak). This study demonstrates that DMA has the potential to be a useful technique to complement stickiness characterization of dairy powders by providing an increased understanding of the mechanisms of stickiness.

6.
Nano Lett ; 20(10): 7011-7019, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32648763

ABSTRACT

Addition of electrolyte additives (ethylene or vinylene carbonate) is shown to dramatically improve the cycling stability and capacity retention (1600 mAh g-1) of Si nanowires (NWs) in a safe ionic liquid (IL) electrolyte (0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI). We show, using postmortem SEM and TEM, a distinct difference in morphologies of the active material after cycling in the presence or absence of the additives. The difference in performance is shown by postmortem XPS analysis to arise from a notable increase in irreversible silicate formation in the absence of the carbonate additives. The composition of the solid electrolyte interphase (SEI) formed at the active material surface was further analyzed using XPS as a function of the IL components revealing that the SEI was primarily made up of N-, F-, and S-containing compounds from the degradation of the TFSI and FSI anions.

7.
ACS Biomater Sci Eng ; 6(3): 1449-1461, 2020 03 09.
Article in English | MEDLINE | ID: mdl-33455378

ABSTRACT

The brain machine interface (BMI) describes a group of technologies capable of communicating with excitable nervous tissue within the central nervous system (CNS). BMIs have seen major advances in recent years, but these advances have been impeded because of a temporal deterioration in the signal to noise ratio of recording electrodes following insertion into the CNS. This deterioration has been attributed to an intrinsic host tissue response, namely, reactive gliosis, which involves a complex series of immune mediators, resulting in implant encapsulation via the synthesis of pro-inflammatory signaling molecules and the recruitment of glial cells. There is a clinical need to reduce tissue encapsulation in situ and improve long-term neuroelectrode functionality. Physical modification of the electrode surface at the nanoscale could satisfy these requirements by integrating electrochemical and topographical signals to modulate neural cell behavior. In this study, commercially available platinum iridium (Pt/Ir) microelectrode probes were nanotopographically functionalized using femto/picosecond laser processing to generate laser-induced periodic surface structures (LIPSS). Three different topographies and their physical properties were assessed by scanning electron microscopy and atomic force microscopy. The electrochemical properties of these interfaces were investigated using electrochemical impedance spectroscopy and cyclic voltammetry. The in vitro response of mixed cortical cultures (embryonic rat E14/E17) was subsequently assessed by confocal microscopy, ELISA, and multiplex protein array analysis. Overall LIPSS features improved the electrochemical properties of the electrodes, promoted cell alignment, and modulated the expression of multiple ion channels involved in key neuronal functions.


Subject(s)
Astrocytes , Neuroglia , Animals , Iridium , Lasers , Microelectrodes , Rats
8.
Sci Rep ; 7(1): 3593, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28620223

ABSTRACT

A novel green preparation route to prepare nano-mesoporous γ-Al2O3 from AlCl3.6H2O derived from aluminum foil waste and designated as ACFL550 is demonstrated, which showed higher surface area, larger pore volume, stronger acidity and higher surface area compared to γ-Al2O3 that is produced from the commercial AlCl3 precursor, AC550. The produced crystalline AlCl3.6H2O and Al(NO3)3.9H2O in the first stage of the preparation method were characterized by single-crystal XRD, giving two crystal structures, a trigonal (R-3c) and monoclinic (P21/c) structure, respectively. EDX analysis showed that ACFL550 had half the chlorine content (Cl%) relative to AC550, which makes ACFL550 a promising catalyst in acid-catalysed reactions. Pure and modified ACFL550 and AC550 were applied in acid-catalysed reactions, the dehydration of methanol to dimethyl ether and the total methane oxidation reactions, respectively. It was found that ACFL550 showed higher catalytic activity than AC550. This work opens doors for the preparation of highly active and well-structured nano-mesoporous alumina catalysts/supports from aluminum foil waste and demonstrates its application in acid-catalysed reactions.

9.
Phys Chem Chem Phys ; 19(19): 12255-12268, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28451671

ABSTRACT

Intentionally defect-rich zinc oxide (ZnO) nanorod-arrays were grown from solution by carefully adjusting the concentration ratio of the growth-precursors used followed by various post-deposition thermal treatments. Post-deposition rapid thermal annealing (RTA) at moderate temperatures (350 °C-550 °C) and in various atmospheres was applied to vary the defect composition of the grown nanorod-arrays. It is demonstrated that, intense, defect-related orange emission occurs solely upon RTA around 450 °C and is essentially independent of the atmosphere used. Extensive materials characterization was carried out in order to evaluate the origin of the orange-luminescent defects and what influence they have on the ZnO material properties. It is concluded that the oxygen vacancy-zinc interstitial defect complex (VO-Zni) is responsible for the orange luminescence in the prepared materials. A kinetic formation mechanism of the VO-Zni complex dependent on the RTA temperature is proposed and shown to be in accordance with the experimental findings. Furthermore it is shown that this bulk deep-level defect could act as a trap state for photo-generated electrons prolonging the charge carrier lifetime of photo-generated holes and therefore improving the charge carrier separation in the material. As a result the photo-current density under simulated sunlight is found to increase by almost 150% over as-grown samples. The potential use of this defective material in applications such as solar water splitting is outlined.

10.
Langmuir ; 31(8): 2584-92, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25644137

ABSTRACT

Multilayer assemblies of two crown-type type heteropolyanions (HPA), [Cu20Cl(OH)24(H2O)12(P8W48O184)](25-) and Ni4(P8W48O148)(WO2)](28-), have been immobilized onto glassy carbon electrode surfaces via the layer-by-layer (LBL) technique employing polycathion-stabilized silver nanoparticles (AgNP) as the cationic layer within the resulting thin films characterized by electrochemical and physical methods. The redox behaviors of both HPA monitored during LBL assembly with cyclic voltammetry and impedance spectroscopy revealed significant changes by immobilization. The presence of AgNPs led to the retention of film porosity and electronic conductivity, which has been shown with impedance and voltammeric studies of film permeabilities toward reversible redox probes. The resulting films have been characterized by physical methods. Finally, the electrocatalytic performance of obtained films with respect to nitrite and nitrate electrocatalytic reduction has been comparatively studied for both catalysts. Nickel atoms trapped inside HPA exhibited a higher specific activity for reduction.

11.
ACS Appl Mater Interfaces ; 7(2): 1046-56, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25478678

ABSTRACT

Surface anchoring of an organic functionalized POM, TBA3K[SiW10O36(PhPO)2] was carried out by two methods, the layer-by-layer (LBL) assembly technique by employing a pentaerythritol-based ruthenium(II) metallodendrimer as a cationic moiety and also by entrapping the POM in a conducting polypyrrole film. The redox behavior of the constructed films was studied by using cyclic voltammetry and electrochemical impedance spectroscopy. The surface morphologies of the constructed multilayers were examined by scanning electron microscopy and atomic force microscopy. X-ray photoelectron spectroscopy was conducted to confirm the elements present within the fabricated films. The multilayer assembly was also investigated for its catalytic efficiency towards the reduction of nitrite.

12.
J Biomed Mater Res A ; 103(2): 709-20, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24825479

ABSTRACT

This study aims to investigate the solubility of a series of titanium (TiO2 )-containing bioactive glasses and their subsequent effect on cell viability. Five glasses were synthesized in the composition range SiO2 -Na2 O-CaO with 5 mol % of increments TiO2 substituted for SiO2 . Glass solubility was investigated with respect to (1) exposed surface area, (2) particle size, (3) incubation time, and (4) compositional effects. Ion release profiles showed that sodium (Na(+) ) presented high release rates after 1 day and were unchanged between 7 and 14 days. Calcium (Ca(2+) ) release presented a significant change at each time period and was also composition dependent, where a reduction in Ca(2+) release is observed with an increase in TiO2 concentration. Silica (Si(4+) ) release did not present any clear trends while no titanium (Ti(4+) ) was released. Cell numbers were found to increase up to 44%, compared to the growing control population, with a reduction in particle size and with the inclusion of TiO2 in the glass composition.


Subject(s)
Calcium/chemistry , Glass/chemistry , Materials Testing , Titanium/chemistry , Animals , Cell Line , Mice , Solubility
13.
ACS Appl Mater Interfaces ; 6(11): 8022-31, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24758586

ABSTRACT

A tetra Ru-substituted polyoxometalate Na10[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2] (Ru4POM) has been successfully immobilised onto glassy carbon electrodes and indium tin oxide (ITO) coated glass slides through the employment of a conducting polypyrrole matrix and the layer-by-layer (LBL) technique. The resulting Ru4POM doped polypyrrole films showed stable redox behavior associated with the Ru centres within the Ru4POM, whereas, the POM's tungsten-oxo redox centres were not accessible. The films showed pH dependent redox behavior within the pH range 2-5 whilst exhibiting excellent stability towards redox cycling. The layer-by-layer assembly was constructed onto poly(diallyldimethylammonium chloride) (PDDA) modified carbon electrodes by alternate depositions of Ru4POM and a Ru(II) metallodendrimer. The resulting Ru4POM assemblies showed stable redox behavior for the redox processes associated with Ru4POM in the pH range 2-5. The charge transfer resistance of the LBL films was calculated through AC-Impedance. Surface characterization of both the polymer and LBL Ru4POM films was carried out using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Initial investigations into the ability of the Ru4POM LBL films to electrocatalytically oxidise water at pH 7 have also been conducted.

15.
Nanoscale ; 5(12): 5549-60, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23680871

ABSTRACT

A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though π-π interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes.


Subject(s)
Coloring Agents/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Silver/chemistry , Adsorption , Biofilms/drug effects , Biofouling , Disinfection , Escherichia coli/physiology , Metal Nanoparticles/toxicity , Pseudomonas aeruginosa/physiology , Water Microbiology , Water Purification
16.
Colloids Surf B Biointerfaces ; 102: 412-9, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23010125

ABSTRACT

Microbial colonisation on clinical and industrial surfaces is currently of global concern and silane based sol-gel coatings are being proposed as potential solutions. Sol-gels are chemically inert, stable and homogeneous and can be designed to act as a reservoir for releasing antimicrobial agents over extended time periods. In the present study, silver nitrate (AgN) and a series of silver coumarin complexes based on coumarin-3-carboxylatosilver (AgC) and it is 6, 7 and 8 hydroxylated analogues (Ag6, Ag7, Ag8) were incorporated into sol-gel coatings. The comparative antibacterial activity of the coatings was determined against meticillin resistant Staphylococcus aureus (MRSA) and multidrug resistance Enterobacter cloacae WT6. The percentage growth inhibitions were found in the range of 9.2 (±2.7)-66.0 (±1.2)% at low silver loadings of 0.3% (w/w) with E. cloacae being the more susceptible. Results showed that among the Ag coumarin complexes, the Ag8 doped coating had the highest antibiofilm property. XPS confirmed the presence of silver in the nanoparticulate state (Ag(0)) at the coating surface where it remained after 4 days of exposure to bacterial culture. Comparative cytotoxicity studies revealed that the Ag-complex coatings were less toxic than the AgN coating. Thus, it can be concluded that a sol-gel matrix with Ag-coumarin complexes may provide non-toxic surfaces with antibacterial properties.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coumarins/chemistry , Gels/chemistry , Silver/chemistry , Anti-Bacterial Agents/adverse effects , Cell Line , Cell Survival/drug effects , Enterobacter cloacae/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Models, Theoretical
17.
ACS Nano ; 6(8): 6977-83, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22765274

ABSTRACT

Here, we report self- and directed assembly of CuIn(1-x)Ga(x)S(2) (CIGS) nanorods into highly ordered 2D and 3D superstructures. The assembly protocol is dictated by the ligand environment and is hence chemically tunable. Thiol capped nanorods spontaneously assemble into 3D aligned nanorod clusters over a period of hours with end to end and side to side order. These clusters can be disassembled by ligand exchange with an amine and subsequently reassembled either at a substrate interface or as free floating 2D sheets by directed assembly protocols. This dimensional control of CIGS nanorod assembly, extending over device scale areas with high degrees of order, is highly attractive for applications utilizing these important quaternary photoabsorbers.


Subject(s)
Copper/chemistry , Gallium/chemistry , Indium/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Selenium/chemistry , Crystallization/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
18.
ACS Nano ; 6(7): 6165-73, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22708541

ABSTRACT

In recent years, there has been significant progress in the biological synthesis of nanomaterials. However, the molecular mechanism of gold biomineralization in microorganisms of industrial relevance remains largely unexplored. Here we describe the biosynthesis mechanism of gold nanoparticles (AuNPs) in the fungus Rhizopus oryzae . Reduction of AuCl(4)(-) [Au(III)] to nanoparticulate Au(0) (AuNPs) occurs in both the cell wall and cytoplasmic region of R. oryzae . The average size of the as-synthesized AuNPs is ~15 nm. The biomineralization occurs through adsorption, initial reduction to Au(I), followed by complexation [Au(I) complexes], and final reduction to Au(0). Subtoxic concentrations (up to 130 µM) of AuCl(4)(-) in the growth medium increase growth of R. oryzae and induce two stress response proteins while simultaneously down-regulating two other proteins. The induction increases mycelial growth, protein yield, and AuNP biosynthesis. At higher Au(III) concentrations (>130 µM), both mycelial and protein yield decrease and damages to the cellular ultrastructure are observed, likely due to the toxic effect of Au(III). Protein profile analysis also confirms the gold toxicity on R. oryzae at high concentrations. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis shows that two proteins of 45 and 42 kDa participate in gold reduction, while an 80 kDa protein serves as a capping agent in AuNP biosynthesis.


Subject(s)
Gold , Metal Nanoparticles , Rhizopus/metabolism , Fungal Proteins/metabolism , Gold/metabolism , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Models, Biological , Mycelium/metabolism , Mycelium/ultrastructure , Nanotechnology , Oxidation-Reduction , Rhizopus/growth & development , Rhizopus/ultrastructure
19.
Langmuir ; 28(12): 5480-8, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22356639

ABSTRACT

Iron-substituted crown-type polyoxometalate (POM) [P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)](20-) has been successfully immobilized onto glassy carbon electrode surfaces by means of the layer-by-layer (LBL) technique employing the cationic redox active dye, methylene blue (MB). The constructed multilayers exhibit pH-dependent redox activity for both the anionic POM and the cationic dye moieties, which is in good agreement with their solution behavior. The films have been characterized by alternating current impedance, atomic force microscopy, and X-ray photoelectron spectroscopy, whereby the nature of the outer layer within the assemblies was found to have an effect upon the film's behavior. Preliminary investigations show that the POM dye-based films show electrocatalytic ability toward the reduction of hydrogen peroxide, however, only when there is an outer anionic POM layer.

20.
Analyst ; 137(7): 1639-48, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22343820

ABSTRACT

A highly efficient and reproducible approach for effective Pt nanoparticles dispersion and excellent decoration (inside/outside) of functionalised carbon nanofibers (f-CNF) is presented. The surface morphological, compositional and structural characterisations of the synthesised Pt(19.2)/f-CNF(80.8) material were examined using transmission electron microscopy (TEM/STEM/DF-STEM), energy-dispersive X-ray spectrometry (EDS), thermogravimetric analysis (TGA/DTG), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) was employed in order to confirm the typical electrochemical response for Pt. The aim of the work was to improve the utility of both the supporting matrix (via the use of both inner/outer surfaces of nanofibers) and precious Pt, together with the sensitive glucose determination. TEM data indicated successful nanoparticle decoration with average Pt particle size 2.4 nm. The studies demonstrated that utilisation of the inner surface of the nanofibers, together with the modified outer surface characteristics using chemical treatment, enables excellent decoration, effective dispersion and efficient impregnation of Pt nanoparticles on carbon nanofibers. Pt(19.2)/f-CNF(80.8) exhibited excellent amperometric response (sensitivity = 22.7 µAmM(-1)cm(-2) and LoD = 0.42 µM) towards direct glucose sensing, over the range 0-10 mM glucose, in neutral conditions (pH 7.4). The improved carbon surface area for nanoparticle decoration, inner surface structure and morphology of nanofibers together with the presence of functional groups provided strong interactions and stability. These features together with the effective nanoparticle dispersion and decoration resulted in excellent catalytic response. The decorated nanoscaled material (Pt(19.2)/f-CNF(80.8)) is capable of large scale production, providing sensing capability in neutral conditions, while eliminating the temperature sensitivity, pH and lifetime issues associated with glucose enzymatic sensors and holds great promise in the quantification of glucose in real clinical samples.


Subject(s)
Carbon/chemistry , Chemistry Techniques, Analytical/methods , Glucose/analysis , Nanofibers/chemistry , Nanoparticles/chemistry , Platinum/chemistry , Electrochemistry/methods , Enzyme Assays , Glucose/chemistry , Microscopy, Electron, Transmission , Particle Size , Sensitivity and Specificity , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...