Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 26(4): 2161-2180, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31919925

ABSTRACT

The Southern Ocean (SO) is among the regions on Earth that are undergoing regionally the fastest environmental changes. The unique ecological features of its marine life make it particularly vulnerable to the multiple effects of climate change. A network of Marine Protected Areas (MPAs) has started to be implemented in the SO to protect marine ecosystems. However, considering future predictions of the Intergovernmental Panel on Climate Change (IPCC), the relevance of current, static, MPAs may be questioned under future scenarios. In this context, the ecoregionalization approach can prove promising in identifying well-delimited regions of common species composition and environmental settings. These so-called ecoregions are expected to show similar biotic responses to environmental changes and can be used to define priority areas for the designation of new MPAs and the update of their current delimitation. In the present work, a benthic ecoregionalization of the entire SO is proposed for the first time based on abiotic environmental parameters and the distribution of echinoid fauna, a diversified and common member of Antarctic benthic ecosystems. A novel two-step approach was developed combining species distribution modeling with Random Forest and Gaussian Mixture modeling from species probabilities to define current ecoregions and predict future ecoregions under IPCC scenarios RCP 4.5 and 8.5. The ecological representativity of current and proposed MPAs of the SO is discussed with regard to the modeled benthic ecoregions. In all, 12 benthic ecoregions were determined under present conditions, they are representative of major biogeographic patterns already described. Our results show that the most dramatic changes can be expected along the Antarctic Peninsula, in East Antarctica and the sub-Antarctic islands under both IPCC scenarios. Our results advocate for a dynamic definition of MPAs, they also argue for improving the representativity of Antarctic ecoregions in proposed MPAs and support current proposals of Conservation of Antarctic Marine Living Resources for the creation of Antarctic MPAs.

2.
PLoS One ; 13(4): e0196375, 2018.
Article in English | MEDLINE | ID: mdl-29672645

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0194575.].

3.
PLoS One ; 13(3): e0194575, 2018.
Article in English | MEDLINE | ID: mdl-29566024

ABSTRACT

Evolutionary radiations are fascinating phenomena corresponding to a dramatic diversification of taxa and a burst of cladogenesis over short periods of time. Most evolutionary radiations have long been regarded as adaptive but this has seldom been demonstrated with large-scale comparative datasets including fossil data. Originating in the Early Jurassic, irregular echinoids are emblematic of the spectacular diversification of mobile marine faunas during the Mesozoic Marine Revolution. They diversified as they colonized various habitats, and now constitute the main component of echinoid fauna in modern seas. The evolutionary radiation of irregular echinoids has long been considered as adaptive but this hypothesis has never been tested. In the present work we analyze the evolution of echinoid species richness and morphological disparity over 37 million years based on an extensive fossil dataset. Our results demonstrate that morphological and functional diversifications in certain clades of irregular echinoids were exceptionally high compared to other clades and that they were associated with the evolution of new modes of life and so can be defined as adaptive radiations. The role played by ecological opportunities in the diversification of these clades was critical, with the evolution of the infaunal mode of life promoting the adaptive radiation of irregular echinoids.


Subject(s)
Biodiversity , Biological Evolution , Genetic Speciation , Sea Urchins/genetics , Animals , Ecology , Fossils , Oceans and Seas , Phylogeny
4.
Evol Dev ; 16(4): 224-32, 2014.
Article in English | MEDLINE | ID: mdl-25040671

ABSTRACT

The evolution of mammalian dentition is constrained by functional necessity and by the non-independence of morphological structures. Efficient chewing implies coherent tooth coordination from development to motion, involving covariation patterns (integration) within dental parts. Using geometric morphometrics, we investigate the modular organization of the highly derived vole dentition. Integration patterns between and within the upper and lower molar rows are analyzed to identify potential modules and their origins (functional and developmental). Results support an integrated adult dentition pattern for both developmental and functional aspects. The integration patterns between opposing molar pairs suggest a transient role for the second upper and lower molars during the chewing motion. Upper and lower molar rows form coherent units but the relative integration of molar pairs is in contradiction with existing developmental models. Emphasis on the first three cusps to grow leads to a very different integration pattern, which would be congruent with developmental models. The early developmental architecture of traits is masked by later stages of growth, but may still be deciphered from the adult phenotype, if careful attention is paid to relevant features.


Subject(s)
Arvicolinae/growth & development , Dentition , Molar/growth & development , Animals , Arvicolinae/anatomy & histology
5.
PLoS One ; 7(5): e37977, 2012.
Article in English | MEDLINE | ID: mdl-22662258

ABSTRACT

Conservation biologists and palaeontologists are increasingly investigating the phylogenetic distribution of extinctions and its evolutionary consequences. However, the dearth of palaeontological studies on that subject and the lack of methodological consensus hamper our understanding of that major evolutionary phenomenon. Here we address this issue by (i) reviewing the approaches used to quantify the phylogenetic selectivity of extinctions and extinction risks; (ii) investigating with a high-resolution dataset whether extinctions and survivals were phylogenetically clustered among early Pliensbachian (Early Jurassic) ammonites; (iii) exploring the phylogenetic and temporal maintenance of this signal. We found that ammonite extinctions were significantly clumped phylogenetically, a pattern that prevailed throughout the 6.6 Myr-long early Pliensbachian interval. Such a phylogenetic conservatism did not alter--or may even have promoted--the evolutionary success of this major cephalopod clade. However, the comparison of phylogenetic autocorrelation among studies remains problematic because the notion of phylogenetic conservatism is scale-dependent and the intensity of the signal is sensitive to temporal resolution. We recommend a combined use of Moran's I, Pearson's ϕ and Fritz and Purvis' D statistics because they highlight different facets of the phylogenetic pattern of extinctions and/or survivals.


Subject(s)
Cephalopoda/genetics , Extinction, Biological , Fossils , Phylogeny , Animals , Biological Evolution , Cephalopoda/classification , Cluster Analysis , Models, Statistical
6.
Evol Dev ; 11(3): 302-11, 2009.
Article in English | MEDLINE | ID: mdl-19469857

ABSTRACT

Knowledge of mammalian tooth formation is increasing, through numerous genetic and developmental studies. The prevalence of teeth in fossil remains has led to an intensive description of evolutionary patterns within and among lineages based on tooth morphology. The extent to which developmental processes have influenced tooth morphologies and therefore the role of these processes in these evolutionary patterns are nonetheless challenging. Recent methodological advances have been proposed allowing the inference of developmental processes from adult morphologies and the characterization of the degree of developmental integration/modularity of morphological traits by studying the patterns of variation within and among individuals. This study focuses on the geometric shape of the lower molars of the vole species Microtus arvalis. Our results suggest (i) quasi-independence of each molar at the developmental level (developmental modules), even slightly stronger for the third molar supporting some genetic and developmental hypotheses and (ii) more pervasive integration processes among molars at the morphological level.


Subject(s)
Arvicolinae/growth & development , Tooth/growth & development , Animals , Morphogenesis
7.
Evolution ; 63(5): 1327-40, 2009 May.
Article in English | MEDLINE | ID: mdl-19187252

ABSTRACT

The study of mammalian evolution is often based on insights into the evolution of teeth. Developmental studies may attempt to address the mechanisms that guide evolutionary changes. One example is the new developmental model proposed by Kavanagh et al. (2007), which provides a high-level testable model to predict mammalian tooth evolution. It is constructed on an inhibitory cascade model based on a dynamic balance of activators and inhibitors, regulating differences in molar size along the lower dental row. Nevertheless, molar sizes in some mammals differ from this inhibitory cascade model, in particular in voles. The aim of this study is to point out arvicoline and murine differences within this model and to suggest an alternative model. Here we demonstrate that the inhibitory cascade is not followed, due to the arvicoline's greatly elongated first lower molar. We broaden the scope of the macroevolutionary model by projecting a time scale onto the developmental model. We demonstrate that arvicoline evolution is rather characterized by a large gap from the oldest vole to more recent genera, with the rapid acquisition of a large first lower molar contemporaneous to their radiation. Our study provides alternative evolutionary hypotheses for mammals with different trajectories of development.


Subject(s)
Arvicolinae/anatomy & histology , Biological Evolution , Models, Biological , Tooth/anatomy & histology , Animals , Cricetinae , Fossils , Mice , Odontometry , Tooth/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...