Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Solid State Nucl Magn Reson ; 87: 111-116, 2017 10.
Article in English | MEDLINE | ID: mdl-28688541

ABSTRACT

The most utilized through-space correlation 1H-{X} methods with proton indirect detection use two consecutive transfers, 1H â†’ X and then X â†’ 1H, with the evolution time t1 in the middle. When the X isotope is not 100% naturally abundant (NA), only the signal of the protons close to these isotopes is modulated by the 1H-X dipolar interactions. This signal is theoretically disentangled with phase-cycling from the un-modulated one. However, this separation is never perfect and it may lead to t1-noise in case of isotopes with very small NA, such as 13C or even worse 15N. One way to reduce this t1-noise is to minimize, 'purge', during t1 the un-modulated 1H magnetization before trying to suppress it with phase-cycling. We analyze experimentally several sequences following the HORROR condition, which allow purging the 1H transverse magnetization. The comparison is made at three spinning speeds, including very fast ones for 1H resolution: 27.75, 55.5 and 111 kHz. We show (i) that the efficiency of this purging process increases with the spinning speed, and (ii) that the best recoupling sequences are the two simplest ones: XY and S1 = SR212. We then compare the S/N that can be achieved with the two most used 1H-{X} 2D methods, called D-HMQC and CP-CP. The only difference in between these two methods is that the transfers are done with either two π/2-pulses on X channel (D-HMQC), or two Cross-Polarization (CP) transfers (CP-CP). The first method, D-HMQC, is very robust and should be preferred when indirectly detecting nuclei with high NA. The second method, CP-CP, (i) requires experimental precautions to limit the t1-noise, and (ii) is difficult to use with quadrupolar nuclei because the two CP transfers are then not efficient nor robust. However, CP-CP is presently the best method to indirectly detect isotopes with small NA, such as 13C and 15N.

2.
Chem Commun (Camb) ; 52(84): 12502-12505, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27722563

ABSTRACT

We report the study of the resistance of archetypal MOFs (MILs, HKUST-1, UiO-66, and ZIF-8) under gamma irradiation. The different porous solids were irradiated with doses up to 1.75 MGy. All the MOFs constructed with transition metals (Cu2+, Zn2+, Zr4+) exhibit an evident destruction of the framework, whereas the compounds constructed with aluminium remain intact.

3.
J Magn Reson ; 245: 38-49, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24929867

ABSTRACT

Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong (1)H-(1)H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that (1)H-(1)H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave (1)H irradiation. We also report that high resolution requires the preservation of (1)H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that (1)H-(1)H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D (1)H-{(13)C} D-HMQC experiments on [U-(13)C]-L-histidine⋅HCl⋅H2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between aliphatic protons and ammonium (14)N sites in L-histidine⋅HCl⋅H2O.


Subject(s)
Histidine/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Artifacts , Models, Chemical
4.
J Chem Phys ; 137(14): 144201, 2012 Oct 14.
Article in English | MEDLINE | ID: mdl-23061841

ABSTRACT

We have recently shown that the dipolar-mediated heteronuclear multiple-quantum coherence (D-HMQC) method allows observing through-space proximities between spin-1/2 ((1)H, (13)C, (31)P...) and quadrupolar ((23)Na, (27)Al...) nuclei. However, the D-HMQC effectiveness depends on the choice of the heteronuclear dipolar recoupling sequence. Here, we compare the efficiency and the robustness of four rotor-synchronized sequences: the symmetry-based ones, R4(1)(2)R4(1)(-2) and its super-cycled version, SR4(1)(2), and two schemes based on simultaneous amplitude and frequency modulations, denoted SFAM-1 and SFAM-2. For the SFAM methods, we point out efficient recoupling conditions that facilitate their experimental optimization and we introduce analytical expressions for the buildup of D-HMQC signal in the case of an isolated spin pair. We show that the main differences between these four sequences lie in the number of adjustable parameters and in their robustness with respect to chemical shift and homonuclear dipolar interactions. The relative performances of these four recoupling sequences are analyzed using average Hamiltonian theory, numerical simulations, and (27)Al-{(31)P} D-HMQC experiments on crystalline aluminophosphate.

5.
Phys Chem Chem Phys ; 13(37): 16786-94, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21853181

ABSTRACT

We show in this article how the spatial proximity between phosphorus and quadrupolar nuclei can be efficiently and easily investigated with the D-HMQC (Dipolar Hetero-nuclear Multiple-Quantum Coherences) NMR technique. Compared to the commonly used CP-HETCOR (Cross-Polarisation HETero-nuclear CORrelation) sequence, the D-HMQC pulse scheme exhibits a higher sensitivity and a better robustness with respect to spinning frequency, electronic shielding and quadrupole interaction, and thus does not require time-consuming and complicated optimisation procedures. The advantages of the D-HMQC are demonstrated in this article through the acquisition of (31)P/S through-space two-dimensional correlation NMR spectra providing unreported structural information on (i) a sodium alumino-silicate glass doped with only 3% of P(2)O(5), (ii) a potassium boro-phosphate glass containing BO(3) and BO(4) groups and (iii) a crystalline zirconium vanado-phosphate. All these systems, representative of the most important mixed phosphate network materials, cannot be correctly investigated with the conventional CP-HETCOR NMR technique.

6.
J Magn Reson ; 200(2): 251-60, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19646906

ABSTRACT

We present a new application of the R2(2)(1) symmetry-based dipolar recoupling scheme, for exciting directly double-quantum (2Q) coherences between the central transition of homonuclear half-integer quadrupolar nuclei. With respect to previously published 2Q-recoupling methods (M. Eden, D. Zhou, J. Yu, Chem. Phys. Lett. 431 (2006) 397), the R2(2)(1) sequence is used without pi/2 bracketing pulses and with an original super-cycling. This leads to an improved efficiency (a factor of two for spin-5/2) and to a much higher robustness to radio-frequency field inhomogeneity and resonance offset. The 2Q-coherence excitation performances are demonstrated experimentally by (27)Al NMR experiments on the aluminophosphates berlinite, VPI5, AlPO(4)-14, and AlPO(4)-CJ3. The two-dimensional 2Q-1Q correlation experiments incorporating these recoupling sequences allow the observation of 2Q cross-peaks between central transitions, even at high magnetic field where the difference in offset between octahedral and tetrahedral (27)Al sites exceeds 10 kHz.


Subject(s)
Algorithms , Aluminum Compounds/analysis , Models, Chemical , Nuclear Magnetic Resonance, Biomolecular/methods , Phosphates/analysis , Computer Simulation , Electromagnetic Fields , Sensitivity and Specificity , Spin Labels
7.
J Magn Reson ; 200(2): 178-88, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19616980

ABSTRACT

We introduce an original pulse sequence, BR2(2)(1)(taupitau), which is a block super-cycled R2(2)(1) sequence employing as basic element a pi pulse sandwiched by 'window' intervals. This homonuclear dipolar recoupling method allows the efficient excitation of double-quantum coherences between spin-1/2 nuclei submitted to very large chemical shift anisotropy. We demonstrate that this technique can be employed in double-quantum<-->single-quantum (31)P homonuclear correlation experiment at high magnetic field (B(0)>or=14 T) and high MAS frequencies (nu(R)>or=30 kHz). The performances of BR2(2)(1)(taupitau) are compared to those of the double-quantum recoupling methods, such as BABA and bracketed fp-RFDR, which were already employed at fast MAS rates. The BR2(2)(1)(taupitau) sequence displays a higher robustness to CSA and offset than the other existing techniques.


Subject(s)
Algorithms , Carbon Radioisotopes/analysis , Carbon Radioisotopes/chemistry , Magnetic Resonance Spectroscopy/methods , Phosphorus Isotopes/analysis , Phosphorus Isotopes/chemistry , Quantum Theory
8.
J Magn Reson ; 198(1): 41-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19185521

ABSTRACT

We report a novel symmetry-based method, using inversion elements bracketed by spin locks, for exciting double-quantum (DQ) coherences between spin-1/2 nuclei, such as protons. Compared to previous DQ-recoupling techniques, this new pulse sequence requires moderate rf field, even at ultra-fast MAS speeds. Furthermore, it is easy to implement and it displays higher robustness to both chemical shift anisotropy and to spreads in resonance frequencies. These advances greatly facilitate the observation of (1)H-(1)H proximities at high fields and high MAS frequencies.


Subject(s)
Protons , Algorithms , Anisotropy , Computer Simulation , Histidine/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Phosphates/chemistry , Quantum Theory
9.
Solid State Nucl Magn Reson ; 35(1): 12-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19131216

ABSTRACT

We review the recent developments proposed for integer or half-integer quadrupolar nuclei, focussing on the methods to observe them under high-resolution and to analyze their through-space and through-bond connectivities.


Subject(s)
Algorithms , Forecasting , Models, Chemical , Nuclear Magnetic Resonance, Biomolecular/methods , Computer Simulation , Sensitivity and Specificity , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...