Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(7): 076108, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068139

ABSTRACT

Experiments done at cryogenic temperatures below the 4.2 K temperature of liquid helium frequently require superconducting coaxial cables to efficiently transmit high-frequency signals while minimizing heat transfer to the experiment's cold stage. These cables are often made of niobium-titanium (NbTi) alloy which is difficult to solder directly. This note describes a new electroplating procedure for plating NbTi coax directly with copper, which enables connector attachment matching the structural and electrical properties of standard coaxial cables. Here, a cable is first electrochemically coated with a thin oxide layer and then electroplated with copper in an acidic copper sulfate solution. The procedure has modest safety requirements and may be carried out in a standard vented laboratory fume hood.

2.
Nano Lett ; 16(9): 5326-32, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27420544

ABSTRACT

Enhanced glioma-stem-cell (GSC) motility and therapy resistance are considered to play key roles in tumor cell dissemination and recurrence. As such, a better understanding of the mechanisms by which these cells disseminate and withstand therapy could lead to more efficacious treatments. Here, we introduce a novel micro-/nanotechnology-enabled chip platform for performing live-cell interrogation of patient-derived GSCs with single-clone resolution. On-chip analysis revealed marked intertumoral differences (>10-fold) in single-clone motility profiles between two populations of GSCs, which correlated well with results from tumor-xenograft experiments and gene-expression analyses. Further chip-based examination of the more-aggressive GSC population revealed pronounced interclonal variations in motility capabilities (up to ∼4-fold) as well as gene-expression profiles at the single-cell level. Chip-supported therapy resistance studies with a chemotherapeutic agent (i.e., temozolomide) and an oligo RNA (anti-miR363) revealed a subpopulation of CD44-high GSCs with strong antiapoptotic behavior as well as enhanced motility capabilities. The living-cell-interrogation chip platform described herein enables thorough and large-scale live monitoring of heterogeneous cancer-cell populations with single-cell resolution, which is not achievable by any other existing technology and thus has the potential to provide new insights into the cellular and molecular mechanisms modulating glioma-stem-cell dissemination and therapy resistance.


Subject(s)
Brain Neoplasms/pathology , Cell Movement , Glioblastoma/pathology , Neoplastic Stem Cells/cytology , Animals , Apoptosis , Humans , Mice , Tumor Cells, Cultured
3.
Small ; 11(40): 5369-74, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26297051

ABSTRACT

A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect.


Subject(s)
Capsules/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Emulsions/chemistry
4.
Biomicrofluidics ; 8(5): 052002, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25332726

ABSTRACT

We report a fundamental study of how the electropermeabilization of a cell is affected by nearby cells. Previous researchers studying electroporation of dense suspensions of cells have observed, both theoretically and experimentally, that such samples cannot be treated simply as collections of independent cells. However, the complexity of those systems makes quantitative modeling difficult. We studied the change in the minimum applied electric field, the threshold field, required to affect electropermeabilization of a cell due to the presence of a second cell. Experimentally, we used optical tweezers to accurately position two cells in a custom fluidic electroporation device and measured the threshold field for electropermeabilization. We also captured video of the process. In parallel, finite element simulations of the electrostatic potential distributions in our systems were generated using the 3-layer model and the contact resistance methods. Reasonably good agreement with measurements was found assuming a model in which changes in a cell's threshold field were predicted from the calculated changes in the maximum voltage across the cell's membrane induced by the presence of a second cell. The threshold field required to electroporate a cell is changed ∼5%-10% by a nearby, nearly touching second cell. Cells aligned parallel to the porating field shield one another. Those oriented perpendicular to the field enhance the applied field's effect. In addition, we found that the dynamics of the electropermeabilization process are important in explaining observations for even our simple two-cell system.

5.
Adv Mater ; 25(33): 4668-72, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23852915

ABSTRACT

A versatile method for achieving atomic carbide-bonded graphene networks on both metallic and non-metallic substrates is described. This consists of vacuum-assisted thermal exfoliation and floatation of functional graphenes at elevated temperatures, followed by deposition on substrates and in situ formation of carbide bonds. The cross-linked graphene networks with an interlayer distance of angstroms exhibits a unique combination of unprecedented properties.

6.
Nat Nanotechnol ; 6(11): 747-54, 2011 Oct 16.
Article in English | MEDLINE | ID: mdl-22002097

ABSTRACT

Many transfection techniques can deliver biomolecules into cells, but the dose cannot be controlled precisely. Delivering well-defined amounts of materials into cells is important for various biological studies and therapeutic applications. Here, we show that nanochannel electroporation can deliver precise amounts of a variety of transfection agents into living cells. The device consists of two microchannels connected by a nanochannel. The cell to be transfected is positioned in one microchannel using optical tweezers, and the transfection agent is located in the second microchannel. Delivering a voltage pulse between the microchannels produces an intense electric field over a very small area on the cell membrane, allowing a precise amount of transfection agent to be electrophoretically driven through the nanochannel, the cell membrane and into the cell cytoplasm, without affecting cell viability. Dose control is achieved by adjusting the duration and number of pulses. The nanochannel electroporation device is expected to have high-throughput delivery applications.


Subject(s)
Electroporation/instrumentation , Electroporation/methods , Models, Biological , Nanotechnology/methods , Transfection/methods , Animals , Cell Line, Tumor , Cell Membrane Permeability/physiology , Cell Survival/physiology , Computer Simulation , Equipment Design , Humans , Jurkat Cells , Mice , Microfluidics/methods
7.
Anal Chem ; 83(11): 3998-4003, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21473595

ABSTRACT

Electropermeabilization or electroporation is the electrical disruption of a cell's membrane to introduce drugs, DNA/RNA, proteins, or other therapies into the cell. Despite four decades of study, the fundamental science of the process remains poorly understood and controversial. We measured the minimum applied electric field required for permeabilization of suspended spherical cells as a function of the cell radius for three cell lines. Key to this work is our use of optical tweezers to precisely position individual cells and enable well-defined, repeatable measurements on cells in suspension. Our findings call into question fundamental assumptions common to all theoretical treatments that we know of. It is generally expected that, for individual cells from a particular cell line, large cells should be easier to electroporate than small ones: the minimum electric field to cause electropermeabilization should scale inversely with the cell diameter. We found instead that each cell line has its own characteristic field that will, on average, cause permeabilization in cells of that line. Electropermeabilization is a stochastic process: two cells which appear identical may have different permeabilization thresholds. However, for all three cell lines, we found that the minimum permeabilization field for any given cell does not depend on its size.


Subject(s)
Electroporation/methods , Optical Tweezers , Animals , Cell Line , Cell Membrane Permeability , Cell Size , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...