Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Pediatr Dermatol ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342503

ABSTRACT

Neonatal jaundice is a frequent condition in newborns and is commonly treated with phototherapy. We describe the case of a neonate with hemolytic disease of the newborn who developed a rarely described purpuric eruption. Laboratory testing revealed elevated porphyrins.

2.
J Cutan Med Surg ; 28(1): 33-36, 2024.
Article in English | MEDLINE | ID: mdl-38229275

ABSTRACT

BACKGROUND: Reactive granulomatous dermatitis (RGD) is a rare and misunderstood skin disorder. It includes interstitial granulomatous dermatitis and palisaded neutrophilic and granulomatous dermatitis: 2 entities of the same spectrum. Multiple associations are described with RGD in the literature, including autoimmune diseases, malignancy, and drugs. OBJECTIVE: To report and describe the suspected associations with RGD at the time of diagnosis and in the following year. METHODS: We retrieved and described cases of RGD confirmed by skin biopsy and clinicopathologic correlation. All patients were evaluated in the Centre Hospitalier Universitaire de Québec-Université Laval between January 2000 and December 2020. Collected data include the systemic diseases (autoimmune disease, malignancy) and suspected drugs, in addition to the clinical presentation and prescribed treatments. RESULTS: Out of the 10 patients with RGD, 7 patients were known to have an autoimmune disease at the time of diagnosis. They either had inflammatory arthritis (3/10) or inflammatory bowel disease (4/10). There was a clinical suspicion of a possible association with a tumor necrosis factor (TNF) inhibitor in 2 of these 7 patients. Among the 3 patients with idiopathic RGD at the time of diagnosis, 1 patient developed a high-grade B-cell lymphoma 6 months later. There was no new association identified in the following year for patients with a known autoimmune condition. CONCLUSION: This descriptive study supports RGD and its previously described systemic associations, particularly autoimmune diseases, malignancy, and certain drugs (specifically TNF inhibitors). The majority of patients already had one of these associations identified at the time of histopathological diagnosis.


Subject(s)
Autoimmune Diseases , Dermatitis , Neoplasms , Humans , Dermatitis/diagnosis , Affect , Tumor Necrosis Factor Inhibitors , Oligopeptides
4.
Front Genet ; 14: 1145166, 2023.
Article in English | MEDLINE | ID: mdl-37576548

ABSTRACT

Introduction: Zoonotic transition of Influenza A viruses is the cause of epidemics with high rates of morbidity and mortality. Predicting which viral strains are likely to transition from their genetic sequence could help in the prevention and response against these zoonotic strains. We hypothesized that features predictive of viral hosts could be leveraged to identify biomarkers of zoonotic viral transition. Methods: We trained deep learning models to predict viral hosts based on the virus mRNA or protein sequences. Our multi-host dataset contained 848,630 unique nucleotide sequences obtained from the NCBI Influenza Virus and Influenza Research Databases. Each sequence, representing one gene from one viral strain, was classified into one of the three host categories: Avian, Human, and Swine. Trained models were analyzed using various neural network interpretation methods to identify interesting candidates for zoonotic transition biomarkers. Results: Using mRNA sequences as input led to higher prediction accuracies than amino acids, suggesting that the codon sequence contains information relevant to viral hosts that is lost during protein translation. UMAP visualization of the latent space of our classifiers showed that viral sequences clustered according to their host of origin. Interestingly, sequences from pandemic zoonotic viral strains localized at the margins between hosts, while zoonotic sequences incapable of Human-to-Human transmission localized with non-zoonotic viruses from the same host. In addition, host prediction for pandemic zoonotic sequences had low prediction accuracy, which was not the case for the other zoonotic strains. This supports our hypothesis that ambiguously predicted viral sequences bear features associated with cross-species infectivity. Finally, we compared misclassified sequences to well-classified ones to extract interesting candidates for zoonotic transition biomarkers. While features varied significantly between pairs of species and viral genes, several codons were conserved in Swine-to-Human and Avian-to-Human misclassified sequences, and in particular in the NA, HA, and NP genes, suggesting their importance for zoonosis in Humans. Discussion: Analysis of viral sequences using neural network interpretation approaches revealed important genetic differences between zoonotic viruses with pandemic potential, compared to non-zoonotic viral strains or zoonotic viruses incapable of Human-to-Human transmission.

5.
Front Immunol ; 14: 1016378, 2023.
Article in English | MEDLINE | ID: mdl-37180153

ABSTRACT

Pregnancy causes abrupt thymic atrophy. This atrophy is characterized by a severe decrease in the number of all thymocyte subsets and qualitative (but not quantitative) changes in thymic epithelial cells (TECs). Pregnancy-related thymic involution is triggered by progesterone-induced functional changes affecting mainly cortical TECs (cTECs). Remarkably, this severe involution is rapidly corrected following parturition. We postulated that understanding the mechanisms of pregnancy-related thymic changes could provide novel insights into signaling pathways regulating TEC function. When we analyzed genes whose expression in TECs was modified during late pregnancy, we found a strong enrichment in genes bearing KLF4 transcription factor binding motifs. We, therefore, engineered a Psmb11-iCre : Klf4lox/lox mouse model to study the impact of TEC-specific Klf4 deletion in steady-state conditions and during late pregnancy. Under steady-state conditions, Klf4 deletion had a minimal effect on TEC subsets and did not affect thymic architecture. However, pregnancy-induced thymic involution was much more pronounced in pregnant females lacking Klf4 expression in TECs. These mice displayed a substantial ablation of TECs with a more pronounced loss of thymocytes. Transcriptomic and phenotypic analyses of Klf4 -/- TECs revealed that Klf4 maintains cTEC numbers by supporting cell survival and preventing epithelial-to-mesenchymal plasticity during late pregnancy. We conclude that Klf4 is essential for preserving TEC's integrity and mitigating thymic involution during late pregnancy.


Subject(s)
Thymocytes , Thymus Gland , Female , Mice , Pregnancy , Animals , Thymus Gland/metabolism , Thymocytes/metabolism , Epithelial Cells/metabolism , Signal Transduction , Atrophy/metabolism
6.
Transplant Cell Ther ; 28(7): 410.e1-410.e5, 2022 07.
Article in English | MEDLINE | ID: mdl-35311667

ABSTRACT

Cord blood (CB) stem cell transplantation offers a greater tolerance to HLA mismatches compared to adult-derived stem cell transplants (i.e., bone marrow or peripheral blood stem cells). Indeed, 4/6 or 5/8 HLA-matched CB transplantations are regularly performed for patients lacking a matched unrelated donor. Unfortunately, most banked CB units contain a stem cell dose that is too small to treat adult patients, resulting in only 4% to 5% of available CB units offering an adequate cell dose for prompt engraftment for adult patients. Ex vivo stem cell expansion appears to be an attractive strategy to circumvent this cell dose issue, while also enabling the selection of better HLA-matched CB units. In this study, we retrospectively performed HLA matching simulations to assess how the minimal cell content requirements associated with UM171 CB expansion may improve usability of existing CB unit inventories and donor availability for patients of different races and ethnicities. We analyzed a dataset of 58,971 adults for whom a donor search was initiated through the National Marrow Donor Program Be The Match registry against 142,942 CB units from major U.S. public CB banks listed on the Be The Match registry. Our results show that by enabling selection of smaller CB units, UM171-expanded CB transplantation increases donor availability from 72% to 84% for all patients compared to single unmanipulated CB transplantation. Furthermore, the low cell dose criteria for UM171-expanded CB also increases donor availability compared to double CB transplantation, while enabling better HLA matching between donor and recipient. UM171 expanded CB appears particularly beneficial for racial and ethnic minority patients as CB availability increases from 53% to 78% for African Americans, from 66% to 85% for Hispanics, and from 68% to 84% for Asians and Pacific Islanders, compared to single unmanipulated CB transplantation. In addition, UM171 expansion dramatically improves usability of CB units currently in inventories, as only 4.3% and 0.6% of banked CBs have sufficient cell doses for a 70 kg and 100 kg patient, respectively. UM171 raises this proportion to 53.8% and 20.2%, respectively, making CB banks potentially more cost effective. In conclusion, UM171 expansion allows the use of smaller CB units while also improving access to transplantation for racial and ethnic minorities.


Subject(s)
Cord Blood Stem Cell Transplantation , Fetal Blood , Adult , Ethnicity , Humans , Minority Groups , Retrospective Studies
7.
PLoS Comput Biol ; 17(10): e1009482, 2021 10.
Article in English | MEDLINE | ID: mdl-34679099

ABSTRACT

MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains difficult, because only a fraction of the transcriptome generates MAPs. In this study, we investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons (MCCs), while excluding the MCC per se. CAMAP predictions were significantly more accurate when using original codon sequences than shuffled codon sequences which reflect amino acid usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, transcript expression level and CAMAP scores was particularly useful to increase MAP prediction accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon arrangement in the regulation of MAP presentation and support integration of both translational and post-translational events in predictive algorithms to ameliorate modeling of the immunopeptidome.


Subject(s)
Codon , Computational Biology/methods , Histocompatibility Antigens Class I , Neural Networks, Computer , Algorithms , Amino Acid Sequence , Codon/chemistry , Codon/genetics , Codon/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans
8.
Transplant Cell Ther ; 27(1): 76.e1-76.e9, 2021 01.
Article in English | MEDLINE | ID: mdl-33022376

ABSTRACT

Rapid T cell reconstitution following hematopoietic stem cell transplantation (HSCT) is essential for protection against infections and has been associated with lower incidence of chronic graft-versus-host disease (cGVHD), relapse, and transplant-related mortality (TRM). While cord blood (CB) transplants are associated with lower rates of cGVHD and relapse, their low stem cell content results in slower immune reconstitution and higher risk of graft failure, severe infections, and TRM. Recently, results of a phase I/II trial revealed that single UM171-expanded CB transplant allowed the use of smaller CB units without compromising engraftment (www.clinicaltrials.gov, NCT02668315). We assessed T cell reconstitution in patients who underwent transplantation with UM171-expanded CB grafts and retrospectively compared it to that of patients receiving unmanipulated CB transplants. While median T cell dose infused was at least 2 to 3 times lower than that of unmanipulated CB, numbers and phenotype of T cells at 3, 6, and 12 months post-transplant were similar between the 2 cohorts. T cell receptor sequencing analyses revealed that UM171 patients had greater T cell diversity and higher numbers of clonotypes at 12 months post-transplant. This was associated with higher counts of naive T cells and recent thymic emigrants, suggesting active thymopoiesis and correlating with the demonstration that UM171 expands common lymphoid progenitors in vitro. UM171 patients also showed rapid virus-specific T cell reactivity and significantly reduced incidence of severe infections. These results suggest that UM171 patients benefit from rapid T cell reconstitution, which likely contributes to the absence of moderate/severe cGVHD, infection-related mortality, and late TRM observed in this cohort.


Subject(s)
Cord Blood Stem Cell Transplantation , Graft vs Host Disease , Cord Blood Stem Cell Transplantation/adverse effects , Fetal Blood , Humans , Retrospective Studies , T-Lymphocytes
9.
J Immunol ; 205(5): 1268-1280, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32690660

ABSTRACT

Regulation of MHC class I (MHC I) expression has been studied almost exclusively in hematolymphoid cells. We report that thymic epithelial cells (TECs), particularly the medullary TECs, constitutively express up to 100-fold more cell surface MHC I proteins than epithelial cells (ECs) from the skin, colon, and lung. Differential abundance of cell surface MHC I in primary ECs is regulated via transcription of MHC I and of genes implicated in the generation of MHC I-binding peptides. Superior MHC I expression in TECs is unaffected by deletion of Ifnar1 or Ifngr1, but is lessened by deletion of Aire, Ifnlr1, Stat1, or Nlrc5, and is driven mainly by type III IFN produced by medullary TECs. Ifnlr1 -/- mice show impaired negative selection of CD8 thymocytes and, at 9 mo of age, present autoimmune manifestations. Our study shows unanticipated variation in MHC I expression by ECs from various sites and provides compelling evidence that superior expression of MHC I in TECs is crucial for proper thymocyte education.


Subject(s)
Epithelial Cells/immunology , Histocompatibility Antigens Class I/immunology , Interferons/immunology , Receptors, Interferon/immunology , Thymus Gland/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Thymocytes/immunology , Interferon Lambda
10.
Lancet Haematol ; 7(2): e134-e145, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31704264

ABSTRACT

BACKGROUND: Benefits of cord blood transplantation include low rates of relapse and chronic graft-versus-host disease (GVHD). However, the use of cord blood is rapidly declining because of the high incidence of infections, severe acute GVHD, and transplant-related mortality. UM171, a haematopoietic stem cell self-renewal agonist, has been shown to expand cord blood stem cells and enhance multilineage blood cell reconstitution in mice. We aimed to investigate the safety and feasibility of single UM171-expanded cord blood transplantation in patients with haematological malignancies who do not have a suitable HLA-matched donor. METHODS: This single-arm, open-label, phase 1-2 safety and feasibility study was done at two hospitals in Canada. The study had two parts. In part 1, patients received two cord blood units (one expanded with UM171 and one unmanipulated cord blood) until UM171-expanded cord blood demonstrated engraftment. Once engraftment was documented we initiated part 2, reported here, in which patients received a single UM171-expanded cord blood unit with a dose de-escalation design to determine the minimal cord blood unit cell dose that achieved prompt engraftment. Eligible patients were aged 3-64 years, weighed 12 kg or more, had a haematological malignancy with an indication for allogeneic hematopoietic stem cell transplant and did not have a suitable HLA-matched donor, and a had a Karnofsky performance status score of 70% or more. Five clinical sites were planned to participate in the study; however, only two study sites opened, both of which only treated adult patients, thus no paediatric patients (aged <18 years) were recruited. Patients aged younger than 50 years without comorbidities received a myeloablative conditioning regimen (cyclophosphamide 120 mg/kg, fludarabine 75 mg/m2, and 12 Gy total body irradiation) and patients aged older than 50 years and those with comorbidities received a less myeloablative conditioning regimen (cyclophosphamide 50 mg/kg, thiotepa 10 mg/kg, fludarabine 150 mg/m2, and 4 Gy total body irradiation). Patients were infused with the 7-day UM171-expanded CD34-positive cells and the lymphocyte-containing CD34-negative fraction. The primary endpoints were feasibility of UM171 expansion, safety of the transplant, kinetics of hematopoietic reconstitution (time to neutrophil and platelet engraftment) of UM171-expanded cord blood, and minimal pre-expansion cord blood unit cell dose that achieved prompt engraftment. We analysed feasibility in all enrolled patients and all other primary outcomes were analysed per protocol, in all patients who received single UM171-expanded cord blood transplantation. This trial has been completed and was registered with ClinicalTrials.gov, NCT02668315. FINDINGS: Between Feb 17, 2016, and Nov 11, 2018, we enrolled 27 patients, four of whom received two cord blood units for safety purposes in part 1 of the study. 23 patients were subsequently enrolled in part 2 to receive a single UM171-expanded cord blood transplant and 22 patients received a single UM171-expanded cord blood transplantation. At data cutoff (Dec 31, 2018), median follow-up was 18 months (IQR 12-22). The minimal cord blood unit cell dose at thaw that achieved prompt engraftment as a single cord transplant after UM171 expansion was 0·52 × 105 CD34-positive cells. We successfully expanded 26 (96%) of 27 cord blood units with UM171. Among the 22 patients who received single UM171-expanded cord blood transplantation, median time to engraftment of 100 neutrophils per µL was 9·5 days (IQR 8-12), median time to engraftment of 500 neutrophils per µL was 18 days (12·5-20·0), and no graft failure occurred. Median time to platelet recovery was 42 days (IQR 35-47). The most common non-haematological adverse events were grade 3 febrile neutropenia (16 [73%] of 22 patients) and bacteraemia (nine [41%]). No unexpected adverse events were observed. One (5%) of 22 patients died due to treatment-related diffuse alveolar haemorrhage. INTERPRETATION: Our preliminary findings suggest that UM171 cord blood stem cell expansion is feasible, safe, and allows for the use of small single cords without compromising engraftment. UM171-expanded cord blood might have the potential to overcome the disadvantages of other cord blood transplants while maintaining the benefits of low risk of chronic GVHD and relapse, and warrants further investigation in randomised trials. FUNDING: Canadian Institutes of Health Research, Canadian Cancer Society and Stem Cell Network.


Subject(s)
Cord Blood Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/drug effects , Indoles/pharmacology , Pyrimidines/pharmacology , Adolescent , Adult , Cell Self Renewal/drug effects , Cells, Cultured/drug effects , Cells, Cultured/transplantation , Cord Blood Stem Cell Transplantation/adverse effects , Disease-Free Survival , Feasibility Studies , Febrile Neutropenia/etiology , Female , Graft Survival , Graft vs Host Disease/etiology , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cells/cytology , Humans , Infant, Newborn , Male , Middle Aged , Proportional Hazards Models , Treatment Outcome , Young Adult
11.
Front Immunol ; 10: 3118, 2019.
Article in English | MEDLINE | ID: mdl-32010151

ABSTRACT

During gestation, sex hormones cause a significant thymic involution which enhances fertility. This thymic involution is rapidly corrected following parturition. As thymic epithelial cells (TECs) are responsible for the regulation of thymopoiesis, we analyzed the sequential phenotypic and transcriptomic changes in TECs during the postpartum period in order to identify mechanisms triggering postpartum thymic regeneration. In particular, we performed flow cytometry analyses and deep RNA-sequencing on purified TEC subsets at several time points before and after parturition. We report that pregnancy-induced involution is not caused by loss of TECs since their number does not change during or after pregnancy. However, during pregnancy, we observed a significant depletion of all thymocyte subsets downstream of the double-negative 1 (DN1) differentiation stage. Variations in thymocyte numbers correlated with conspicuous changes in the transcriptome of cortical TECs (cTECs). The transcriptomic changes affected predominantly cTEC expression of Foxn1, its targets and several genes that are essential for thymopoiesis. By contrast, medullary TECs (mTECs) showed very little transcriptomic changes in the early postpartum regenerative phase, but seemed to respond to the expansion of single-positive (SP) thymocytes in the late phase of regeneration. Together, these results show that postpartum thymic regeneration is orchestrated by variations in expression of a well-defined subset of cTEC genes, that occur very early after parturition.


Subject(s)
Epithelial Cells/immunology , Postpartum Period/immunology , Regeneration/immunology , Thymocytes/immunology , Thymus Gland/physiology , Animals , Epithelial Cells/cytology , Female , Mice , Pregnancy , Thymocytes/cytology
12.
Front Immunol ; 8: 1717, 2017.
Article in English | MEDLINE | ID: mdl-29259606

ABSTRACT

Thymic aging precedes that of other organs and is initiated by the gradual loss of thymic epithelial cells (TECs). Based on in vitro culture and transplantation assays, recent studies have reported on the presence of thymic epithelial progenitor cells (TEPCs) in young adult mice. However, the physiological role and properties of TEPC populations reported to date remain unclear. Using an in vivo label-retention assay, we previously identified a population of quiescent but non-senescent TECs. The goals of this study were therefore (i) to evaluate the contribution of these quiescent TECs to thymic regeneration following irradiation-induced acute thymic injury and (ii) to characterize their phenotypic and molecular profiles using flow cytometry, immunohistology, and transcriptome sequencing. We report that while UEA1+ cells cycle the most in steady state, they are greatly affected by irradiation, leading to cell loss and proliferative arrest following acute thymic involution. On the opposite, the UEA1- subset of quiescent TECs is radioresistant and proliferate in situ following acute thymic involution, thereby contributing to thymic regeneration in 28- to 30-week-old mice. UEA1- quiescent TECs display an undifferentiated phenotype (co-expression of K8 and K5 cytokeratins) and express high levels of genes that regulate stem cell activity in different tissues (e.g., Podxl and Ptprz1). In addition, two features suggest that UEA1- quiescent TECs occupy discrete stromal niches: (i) their preferential location in clusters adjacent to the cortico-medullary junction and (ii) their high expression of genes involved in cross talk with mesenchymal cells. The ability of UEA1- quiescent TECs to participate to TEC regeneration qualifies them as in vivo progenitor cells particularly relevant in the context of regeneration following acute thymic injury.

13.
Sci Rep ; 5: 12895, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26250469

ABSTRACT

The goal of our study was to evaluate at the systems-level, the effect of sex hormones on thymic epithelial cells (TECs). To this end, we sequenced the transcriptome of cortical and medullary TECs (cTECs and mTECs) from three groups of 6 month-old mice: males, females and males castrated at four weeks of age. In parallel, we analyzed variations in the size of TEC subsets in those three groups between 1 and 12 months of age. We report that sex hormones have pervasive effects on the transcriptome of TECs. These effects were exquisitely TEC-subset specific. Sexual dimorphism was particularly conspicuous in cTECs. Male cTECs displayed low proliferation rates that correlated with low expression of Foxn1 and its main targets. Furthermore, male cTECs expressed relatively low levels of genes instrumental in thymocyte expansion (e.g., Dll4) and positive selection (Psmb11 and Ctsl). Nevertheless, cTECs were more abundant in males than females. Accumulation of cTECs in males correlated with differential expression of genes regulating cell survival in cTECs and cell differentiation in mTECs. The sexual dimorphism of TECs highlighted here may be mechanistically linked to the well-recognized sex differences in susceptibility to infections and autoimmune diseases.


Subject(s)
Epithelial Cells/metabolism , Gonadal Steroid Hormones/metabolism , Thymocytes/metabolism , Thymus Gland/metabolism , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Female , Male , Mice , Mice, Inbred C57BL , Transcriptome/genetics
14.
J Immunol ; 192(5): 2219-26, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24477909

ABSTRACT

Progress in our understanding of thymic epithelial cell (TEC) renewal and homeostasis is hindered by the lack of markers for TEC progenitors. Stem and progenitor cell populations display remarkable diversity in their proliferative behavior. In some but not all tissues, stemness is associated with quiescence. The primary goal of our study was to discover whether quiescent cells were present in neonatal and adult TECs. To this end, we used a transgenic label-retaining cell (LRC) assay in which a histone H2B-GFP fusion protein is expressed under the control of the reverse tetracycline-controlled transactivator and the tetracycline operator minimal promoter. In adult mice, we found that both cortical and medullary TECs (cTECs and mTECs) proliferated more actively in females than males. Moreover, we observed three main differences between neonatal and adult TECs: 1) neonatal TECs proliferated more actively than adult TECs; 2) whereas cTECs and mTECs had similar turnover rates in young mice, the turnover of mTECs was more rapid than that of cTECs in adults; and 3) although no LRCs could be detected in young mice, LRCs were detectable after a 16-wk chase in adults. In female mice, LRCs were found almost exclusively among cTECs and expressed relatively low levels of p16INK4a, p19ARF, and Serpine1, and high levels of Bmi1, Foxn1, Trp63, and Wnt4. We conclude that LRCs in adult TECs are not senescent postmitotic cells and may represent the elusive progenitors responsible for TEC maintenance in the adult thymus.


Subject(s)
Cellular Senescence/immunology , Stem Cells/cytology , Thymus Gland/cytology , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/immunology , Epithelium/immunology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Male , Mice , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/immunology , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/immunology , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/immunology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Stem Cells/immunology , Thymus Gland/immunology , Trans-Activators/genetics , Trans-Activators/immunology , Wnt4 Protein/genetics , Wnt4 Protein/immunology
15.
PLoS One ; 8(9): e72801, 2013.
Article in English | MEDLINE | ID: mdl-24023776

ABSTRACT

Both physiological and psychological stress cause thymic atrophy via glucocorticoïd (GC)-dependent apoptosis of double-positive (DP) thymocytes. Given the pervasiveness of stress, GC-induced thymic atrophy is arguably the most common type of acquired immunodeficiency. We recently reported that interleukin-21 (IL-21) has a unique ability to expand the small subset of DP thymocytes (CD69(+)) which are ongoing positive selection, and that administration of IL-21 increases thymic output in aged mice. The goal of this study was to evaluate whether IL-21 could mitigate GC-induced thymic atrophy. In contrast to double-negative (DN) and single-positive (SP) thymocytes, most DP thymocytes (CD69(-)) do not constitutively express the IL-21 receptor (IL-21R). Accordingly, CD69(-) DP thymocytes from PBS-treated mice were unresponsive to IL-21 administration. However, following GC injection, surviving CD69(-) DP thymocytes up-regulated IL-21R and responded to IL-21 treatment as evidenced by enhancement of Bcl6 expression and phosphorylation of STAT1, STAT3 and STAT5. Consequently, IL-21 administration to GC-treated mice accelerated thymic recovery by expanding considerably DP thymocytes and, to a lesser extent, DN thymocytes. However, IL-21-induced expansion of DN/DP thymocytes did not alter the diversity of the intrathymic or peripheral T-cell receptor (TCR) repertoire. We conclude that IL-21 dramatically accelerates recovery from GC-induced thymic atrophy.


Subject(s)
Glucocorticoids/pharmacology , Interleukins/pharmacology , Thymocytes/drug effects , Thymocytes/metabolism , Animals , Female , Flow Cytometry , Mice , Mice, Inbred C57BL , Receptors, Interleukin-21/metabolism , Reverse Transcriptase Polymerase Chain Reaction , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism
16.
Sci Rep ; 3: 1860, 2013.
Article in English | MEDLINE | ID: mdl-23681267

ABSTRACT

In order to gain novel insights into thymus biology, we analysed the whole transcriptome of cortical and medullary thymic epithelial cells (cTECs and mTECs) and of skin epithelial cells (ECs). Consistent with their ability to express ectopic genes, mTECs expressed more genes than other cell populations. Out of a total of 15,069 genes expressed in TECs, 25% were differentially expressed by at least 5-fold in cTECs vs. mTECs. Genes expressed at higher levels in cTECs than mTECs regulate numerous cell functions including cell differentiation, cell movement and microtubule dynamics. Many positive regulators of the cell cycle were overexpressed in skin ECs relative to TECs. Our RNA-seq data provide novel systems-level insights into the transcriptional landscape of TECs, highlight substantial divergences in the transcriptome of TEC subsets and suggest that cell cycle progression is differentially regulated in TECs and skin ECs.


Subject(s)
Biomarkers/metabolism , Epithelial Cells/metabolism , Gene Expression Profiling , Skin/metabolism , Thymus Gland/metabolism , Animals , Animals, Newborn , Cell Differentiation , Epithelial Cells/cytology , Flow Cytometry , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Skin/cytology , Thymus Gland/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...