Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 22(2): 450-62, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23190431

ABSTRACT

Loci considered to be under selection are generally avoided in attempts to infer past demographic processes as they do not fit neutral model assumptions. However, opportunities to better reconstruct some aspects of past demography might thus be missed. Here we examined genetic differentiation between two sympatric European oak species with contrasting ecological dynamics (Quercus robur and Quercus petraea) with both outlier (i.e. loci possibly affected by divergent selection between species or by hitchhiking effects with genomic regions under selection) and nonoutlier loci. We sampled 855 individuals in six mixed forests in France and genotyped them with a set of 262 SNPs enriched with markers showing high interspecific differentiation, resulting in accurate species delimitation. We identified between 13 and 74 interspecific outlier loci, depending on the coalescent simulation models and parameters used. Greater genetic diversity was predicted in Q. petraea (a late-successional species) than in Q. robur (an early successional species) as introgression should theoretically occur predominantly from the resident species to the invading species. Remarkably, this prediction was verified with outlier loci but not with nonoutlier loci. We suggest that the lower effective interspecific gene flow at loci showing high interspecific divergence has better preserved the signal of past asymmetric introgression towards Q. petraea caused by the species' contrasting dynamics. Using markers under selection to reconstruct past demographic processes could therefore have broader potential than generally recognized.


Subject(s)
Gene Flow , Genetic Loci , Quercus/genetics , DNA, Plant/genetics , France , Genetic Markers , Genetic Variation , Genotype , Likelihood Functions , Polymorphism, Single Nucleotide , Sympatry
2.
Mol Ecol Resour ; 11(4): 591-611, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21565126

ABSTRACT

Microsatellites have been popular molecular markers ever since their advent in the late eighties. Despite growing competition from new genotyping and sequencing techniques, the use of these versatile and cost-effective markers continues to increase, boosted by successive technical advances. First, methods for multiplexing PCR have considerably improved over the last years, thereby decreasing genotyping costs and increasing throughput. Second, next-generation sequencing technologies allow the identification of large numbers of microsatellite loci at reduced cost in non-model species. As a consequence, more stringent selection of loci is possible, thereby further enhancing multiplex quality and efficiency. However, current practices are lagging behind. By surveying recently published population genetic studies relying on simple sequence repeats, we show that more than half of the studies lack appropriate quality controls and do not make use of multiplex PCR. To make the most of the latest technical developments, we outline the need for a well-established strategy including standardized high-throughput bench protocols and specific bioinformatic tools, from primer design to allele calling.


Subject(s)
Genetic Markers , Genetic Testing/methods , Microsatellite Repeats , Computational Biology/methods , Computational Biology/standards , Genetic Testing/standards , Genotype , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards
3.
Mol Ecol Resour ; 11(3): 578-85, 2011 May.
Article in English | MEDLINE | ID: mdl-21481218

ABSTRACT

Multiplex PCR is a fast and cost-effective technique allowing increased genotyping throughput of microsatellites. We developed two multiplexes for Quercus petraea and Q. robur, a 12-plex of EST-SSRs (eSSRs) and an 8-plex of genomic SSRs (gSSRs). We studied the origin of allele calling errors at the human reader and software levels. We showed that the robustness of allele identification can be improved by binning on raw peak sizes prior to genetic data analysis. We checked through simulation the power of these markers for species delimitation and hybrid detection. The resolution achieved with all 20 markers was greatly improved compared to that of previous studies based on a subset of the markers. Preliminary PCR tests suggest that these multiplexes might be useful to study other oak species as well. The strategy used for multiplex microsatellite development (from PCR conditions to the definition of allele calling rules) should be broadly applicable.


Subject(s)
Microsatellite Repeats , Polymerase Chain Reaction/methods , Quercus/classification , Quercus/genetics , Alleles , Genotype , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...