Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Mech Behav Biomed Mater ; 155: 106579, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749266

ABSTRACT

Silicon nitride is utilized clinically as a bioceramic for spinal fusion cages, owing to its high strength, osteoconductivity, and antibacterial effects. Nevertheless, silicon nitride exhibits suboptimal damping properties, a critical factor in mitigating traumatic bone injuries and fractures. In fact, there is a scarcity of spinal implants that simultaneously demonstrate proficient damping performance and support osteogenesis. In our study, we fabricated a novel sodium alginate-silicon nitride/poly(vinyl alcohol) (SA-SiN/PVA) composite scaffold, enabling enhanced energy absorption and rapid elastic recovery under quasi-static and impact loading scenarios. Furthermore, the study demonstrated that the incorporation of physical and chemical cross-linking significantly improved stiffness and recoverable energy dissipation. Concerning the interaction between cells and materials, our findings suggest that the addition of silicon nitride stimulated osteogenic differentiation while inhibiting Staphylococcus aureus growth. Collectively, the amalgamation of ceramics and tough hydrogels facilitates the development of advanced composites for spinal implants, manifesting superior damping, osteogenic potential, and antibacterial properties. This approach holds broader implications for applications in bone tissue engineering.


Subject(s)
Alginates , Biocompatible Materials , Materials Testing , Polyvinyl Alcohol , Silicon Compounds , Staphylococcus aureus , Alginates/chemistry , Alginates/pharmacology , Polyvinyl Alcohol/chemistry , Silicon Compounds/chemistry , Silicon Compounds/pharmacology , Staphylococcus aureus/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Osteogenesis/drug effects , Mechanical Phenomena , Tissue Scaffolds/chemistry , Humans
2.
Nat Microbiol ; 8(2): 204-217, 2023 02.
Article in English | MEDLINE | ID: mdl-36624229

ABSTRACT

Bacteria communicate and coordinate their behaviour at the intra- and interspecies levels by producing and sensing diverse extracellular small molecules called autoinducers. Autoinducer 2 (AI-2) is produced and detected by a variety of bacteria and thus plays an important role in interspecies communication and chemotaxis. Although AI-2 is a major autoinducer molecule present in the mammalian gut and can influence the composition of the murine gut microbiota, its role in bacteria-bacteria and bacteria-host interactions during gut colonization remains unclear. Combining competitive infections in C57BL/6 mice with microscopy and bioinformatic approaches, we show that chemotaxis (cheY) and AI-2 signalling (via lsrB) promote gut colonization by Escherichia coli, which is in turn connected to the ability of the bacteria to utilize fructoselysine (frl operon). We further show that the genomic diversity of E. coli strains with respect to AI-2 signalling allows ecological niche segregation and stable co-existence of different E. coli strains in the mammalian gut.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Animals , Mice , Escherichia coli/genetics , Chemotaxis , Mice, Inbred C57BL , Lactones , Bacteria/genetics , Mammals , Carrier Proteins , Escherichia coli Proteins/genetics
3.
J Bacteriol ; 204(12): e0034722, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36383016

ABSTRACT

The global rise of drug-resistant bacteria is of great concern. Conjugative transfer of antibiotic resistance plasmids contributes to the emerging resistance crisis. Despite substantial progress in understanding the molecular basis of conjugation in vitro, the in vivo dynamics of intra- and interspecies conjugative plasmid transfer are much less understood. In this study, we focused on the streptomycin resistance-encoding mobilizable plasmid pRSF1010SL1344 (P3) of Salmonella enterica serovar Typhimurium strain SL1344. We show that P3 is mobilized by interacting with the conjugation machinery of the conjugative plasmid pCol1B9SL1344 (P2) of SL1344. Thereby, P3 can be transferred into a broad range of relevant environmental and clinical bacterial isolates in vitro and in vivo. Our data suggest that S. Typhimurium persisters in host tissues can serve as P3 reservoirs and foster transfer of both P2 and P3 once they reseed the gut lumen. This adds to our understanding of resistance plasmid transfer in ecologically relevant niches, including the mammalian gut. IMPORTANCE S. Typhimurium is a globally abundant bacterial species that rapidly occupies new niches and survives unstable environmental conditions. As an enteric pathogen, S. Typhimurium interacts with a broad range of bacterial species residing in the mammalian gut. High abundance of bacteria in the gut lumen facilitates conjugation and spread of plasmid-carried antibiotic resistance genes. By studying the transfer dynamics of the P3 plasmid in vitro and in vivo, we illustrate the impact of S. Typhimurium-mediated antibiotic resistance spread via conjugation to relevant environmental and clinical bacterial isolates. Plasmids are among the most critical vehicles driving antibiotic resistance spread. Further understanding of the dynamics and drivers of antibiotic resistance transfer is needed to develop effective solutions for slowing down the emerging threat of multidrug-resistant bacterial pathogens.


Subject(s)
Salmonella enterica , Salmonella typhimurium , Animals , Salmonella typhimurium/genetics , Serogroup , Conjugation, Genetic , Plasmids/genetics , Salmonella enterica/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Mammals/genetics
4.
FEMS Microbiol Rev ; 45(6)2021 11 23.
Article in English | MEDLINE | ID: mdl-34227665

ABSTRACT

Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.


Subject(s)
Chemotaxis , Mass Gatherings , Animals , Bacterial Physiological Phenomena , Bacterial Proteins/genetics , Escherichia coli/genetics , Flagella
6.
Front Bioeng Biotechnol ; 9: 794586, 2021.
Article in English | MEDLINE | ID: mdl-34976982

ABSTRACT

Silicon nitride (SiN [Si3N4]) is a promising bioceramic for use in a wide variety of orthopedic applications. Over the past decades, it has been mainly used in industrial applications, such as space shuttle engines, but not in the medical field due to scarce data on the biological effects of SiN. More recently, it has been increasingly identified as an emerging material for dental and orthopedic implant applications. Although a few reports about the antibacterial properties and osteoconductivity of SiN have been published to date, there have been limited studies of SiN-based scaffolds for bone tissue engineering. Here, we developed a silicon nitride reinforced gelatin/chitosan cryogel system (SiN-GC) by loading silicon nitride microparticles into a gelatin/chitosan cryogel (GC), with the aim of producing a biomimetic scaffold with antibiofilm and osteogenic properties. In this scaffold system, the GC component provides a hydrophilic and macroporous environment for cells, while the SiN component not only provides antibacterial properties and osteoconductivity but also increases the mechanical stiffness of the scaffold. This provides enhanced mechanical support for the defect area and a better osteogenic environment. First, we analyzed the scaffold characteristics of SiN-GC with different SiN concentrations, followed by evaluation of its apatite-forming capacity in simulated body fluid and protein adsorption capacity. We further confirmed an antibiofilm effect of SiN-GC against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as well as enhanced cell proliferation, mineralization, and osteogenic gene upregulation for MC3T3-E1 pre-osteoblast cells. Finally, we developed a bioreactor to culture cell-laden scaffolds under cyclic compressive loading to mimic physiological conditions and were able to demonstrate improved mineralization and osteogenesis from SiN-GC. Overall, we confirmed the antibiofilm and osteogenic effect of a silicon nitride reinforced cryogel system, and the results indicate that silicon nitride as a biomaterial system component has a promising potential to be developed further for bone tissue engineering applications.

7.
Cell Host Microbe ; 27(6): 922-936.e6, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32416061

ABSTRACT

Initial enteropathogen growth in the microbiota-colonized gut is poorly understood. Salmonella Typhimurium is metabolically adaptable and can harvest energy by anaerobic respiration using microbiota-derived hydrogen (H2) as an electron donor and fumarate as an electron acceptor. As fumarate is scarce in the gut, the source of this electron acceptor is unclear. Here, transposon sequencing analysis along the colonization trajectory of S. Typhimurium implicates the C4-dicarboxylate antiporter DcuABC in early murine gut colonization. In competitive colonization assays, DcuABC and enzymes that convert the C4-dicarboxylates aspartate and malate into fumarate (AspA, FumABC), are required for fumarate/H2-dependent initial growth. Thus, S. Typhimurium obtains fumarate by DcuABC-mediated import and conversion of L-malate and L-aspartate. Fumarate reduction yields succinate, which is exported by DcuABC in exchange for L-aspartate and L-malate. This cycle allows S. Typhimurium to harvest energy by H2/fumarate respiration in the microbiota-colonized gut. This strategy may also be relevant for commensal E. coli diminishing the S. Typhimurium infection.


Subject(s)
Aspartic Acid/metabolism , Fumarates/metabolism , Gastrointestinal Microbiome/physiology , Malates/metabolism , Salmonella/metabolism , Administration, Oral , Animals , Aspartic Acid/administration & dosage , Bacterial Proteins/metabolism , Citric Acid Cycle , Disease Models, Animal , Escherichia coli/metabolism , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Malates/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mutagenesis , RNA, Ribosomal, 16S/genetics , Salmonella/genetics , Salmonella/growth & development , Salmonella typhimurium , Sequence Analysis, DNA , Succinic Acid
8.
mBio ; 11(2)2020 03 24.
Article in English | MEDLINE | ID: mdl-32209689

ABSTRACT

Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection.IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/pathogenicity , Flagella/genetics , Gene Expression Regulation, Bacterial , Mechanotransduction, Cellular , Bacterial Proteins/metabolism , Culture Media/metabolism , Flagella/physiology , Movement , Virulence
9.
mBio ; 10(5)2019 09 10.
Article in English | MEDLINE | ID: mdl-31506310

ABSTRACT

Bacterial viruses, or bacteriophages, are highly abundant in the biosphere and have a major impact on microbial populations. Many examples of phage interactions with their hosts, including establishment of dormant lysogenic and active lytic states, have been characterized at the level of the individual cell. However, much less is known about the dependence of these interactions on host metabolism and signal exchange within bacterial communities. In this report, we describe a lysogenic state of the enterobacterial phage T1, previously known as a classical lytic phage, and characterize the underlying regulatory circuitry. We show that the transition from lysogeny to lysis depends on bacterial population density, perceived via interspecies autoinducer 2. Lysis is further controlled by the metabolic state of the cell, mediated by the cyclic-3',5'-AMP (cAMP) receptor protein (CRP) of the host. We hypothesize that such combinations of cell density and metabolic sensing may be common in phage-host interactions.IMPORTANCE The dynamics of microbial communities are heavily shaped by bacterium-bacteriophage interactions. But despite the apparent importance of bacteriophages, our understanding of the mechanisms controlling phage dynamics in bacterial populations, and particularly of the differences between the decisions that are made in the dormant lysogenic and active lytic states, remains limited. In this report, we show that enterobacterial phage T1, previously described as a lytic phage, is able to undergo lysogeny. We further demonstrate that the lysogeny-to-lysis decision occurs in response to changes in the density of the bacterial population, mediated by interspecies quorum-sensing signal AI-2, and in the metabolic state of the cell, mediated by cAMP receptor protein. We hypothesize that this strategy enables the phage to maximize its chances of self-amplification and spreading in bacterial population upon induction of the lytic cycle and that it might be common in phage-host interactions.


Subject(s)
Bacteriophages/genetics , Lysogeny , Quorum Sensing , Bacterial Proteins/genetics , Bacteriophages/physiology , Cyclic AMP Receptor Protein/genetics , Escherichia coli/genetics , Escherichia coli/virology , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Viral
10.
Appl Environ Microbiol ; 84(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29269492

ABSTRACT

Biofilms in nature typically consist of multiple species, and microbial interactions are likely to have crucial effects on biofilm development, structure, and functions. The best-understood form of communication within bacterial communities involves the production, release, and detection of signal molecules (autoinducers), known as quorum sensing. Although autoinducers mainly promote intraspecies communication, autoinducer 2 (AI-2) is produced and detected by a variety of bacteria, thus principally allowing interspecies communication. Here we show the importance of AI-2-mediated signaling in the formation of mixed biofilms by Enterococcus faecalis and Escherichia coli Our results demonstrate that AI-2 produced by E. faecalis promotes collective behaviors of E. coli at lower cell densities, enhancing autoaggregation of E. coli but also leading to chemotaxis-dependent coaggregation between the two species. Finally, we show that formation of such mixed dual-species biofilms increases the stress resistance of both E. coli and E. faecalisIMPORTANCE The role of interspecies communication in the development of mixed microbial communities is becoming increasingly apparent, but specific examples of such communication remain limited. The universal signal molecule AI-2 is well known to regulate cell-density-dependent phenotypes of many bacterial species but, despite its potential for interspecies communication, the role of AI-2 in the establishment of multispecies communities is not well understood. In this study, we explore AI-2 signaling in a dual-species community containing two bacterial species that naturally cooccur in their mammalian hosts, i.e., Escherichia coli and Enterococcus faecalis We show that active production of AI-2 by E. faecalis allows E. coli to perform collective behaviors at low cell densities. Additionally, AI-2- and chemotaxis-dependent coaggregation with E. faecalis creates nucleation zones for rapid growth of E. coli microcolonies in mixed biofilms and enhances the stress resistance of both species.


Subject(s)
Biofilms/growth & development , Carrier Proteins/metabolism , Enterococcus faecalis/physiology , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Coculture Techniques , Enterococcus faecalis/growth & development , Escherichia coli/growth & development
12.
Nat Commun ; 7: 12984, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27687245

ABSTRACT

Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour-autoaggregation-of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell-cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...