Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(6): e0179517, 2017.
Article in English | MEDLINE | ID: mdl-28658311

ABSTRACT

Comparative functional genomic studies require the proper identification of gene orthologs to properly exploit animal biomedical research models. To identify gene orthologs, comprehensive, conserved gene synteny analyses are necessary to unwind gene histories that are convoluted by two rounds of early vertebrate genome duplication, and in the case of the teleosts, a third round, the teleost genome duplication (TGD). Recently, the genome of the spotted gar, a holostean outgroup to the teleosts that did not undergo this third genome duplication, was sequenced and applied as an orthology bridge to facilitate the identification of teleost orthologs to human genes and to enhance the power of teleosts as biomedical models. In this study, we apply the spotted gar orthology bridge to help describe the gene history of the vertebrate TNFAIP8 family. Members of the TNFAIP8 gene family have been linked to regulation of immune function and homeostasis and the development of multiple cancer types. Through a conserved gene synteny analysis, we identified zebrafish orthologs to human TNFAIP8L1 and TNFAIP8L3 genes and two co-orthologs to human TNFAIP8L2, but failed to identify an ortholog to human TNFAIP8. Through the application of the orthology bridge, we determined that teleost orthologs to human TNFAIP8 genes were likely lost in a genome inversion event after their divergence from their common ancestor with spotted gar. These findings demonstrate the value of this enhanced approach to gene history analysis and support the development of teleost models to study complex questions related to an array of biomedical issues, including immunity and cancer.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Evolution, Molecular , Fishes/genetics , Synteny , Animals , Databases, Genetic , Humans , Phylogeny
2.
J Immunol ; 183(9): 5896-908, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19812203

ABSTRACT

Mammalian immune responses to LPS exposure are typified by the robust induction of NF-kappaB and IFN-beta responses largely mediated by TLR4 signal transduction pathways. In contrast to mammals, Tlr4 signal transduction pathways in nontetrapods are not well understood. Comprehensive syntenic and phylogenetic analyses support our hypothesis that zebrafish tlr4a and tlr4b genes are paralogous rather than orthologous to human TLR4. Furthermore, we provide evidence to support our assertion that the in vivo responsiveness of zebrafish to LPS exposure is not mediated by Tlr4a and Tlr4b paralogs because they fail to respond to LPS stimulation in vitro. Zebrafish Tlr4a and Tlr4b paralogs were also unresponsive to heat-killed Escherichia coli and Legionella pneumophila. Using chimeric molecules in which portions of the zebrafish Tlr4 proteins were fused to portions of the mouse TLR4 protein, we show that the lack of responsiveness to LPS was most likely due to the inability of the extracellular portions of zebrafish Tlr4a and Tlr4b to recognize the molecule, rather than to changes in their capacities to transduce signals through their Toll/IL-1 receptor (TIR) domains. Taken together, these findings strongly support the notion that zebrafish tlr4a and tlr4b paralogs have evolved to provide alternative ligand specificities to the Tlr immune defense system in this species. These data demonstrate that intensive examination of gene histories when describing the Tlr proteins of basally diverging vertebrates is required to obtain fuller appreciation of the evolution of their function. These studies provide the first evidence for the functional evolution of a novel Tlr.


Subject(s)
Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Zebrafish Proteins/genetics , Zebrafish Proteins/immunology , Zebrafish/genetics , Zebrafish/immunology , Amino Acid Sequence , Animals , Cell Line , Cell Line, Tumor , Cells, Cultured , Chickens , Humans , Ligands , Lipopolysaccharides/physiology , Mice , Molecular Sequence Data , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/metabolism , Sequence Homology, Amino Acid , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/physiology , Zebrafish/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/physiology
3.
Toxicol Sci ; 98(1): 118-24, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17400579

ABSTRACT

Arsenic has been associated with a multitude of human health problems; however, its impact on host resistance to infection has not been extensively researched. In vertebrates, the innate immune response is vital for potentiating the adaptive immune response. Therefore, dampening of the innate immune response results in an immunocompromised host. In this present study, effects of low concentrations of arsenic on zebrafish resistance to infection are evaluated. Exposure to 2 and 10 ppb arsenic, both considered safe levels in drinking water, resulted in a greater than 50-fold increase in viral load and at least a 17-fold increase in bacterial load in embryos. To determine the cause of this amplified pathogen load, important components of the innate immune system were analyzed. Presence of arsenic dampened the overall innate immune health of the fish as evidenced by reductions in respiratory burst activity. Viral infection, after arsenic exposure, showed decreases of up to 13- and 1.5-fold changes in interferon and Mx mRNA expression, respectively. Bacterial infection, post arsenic exposure, demonstrated at least 2.5- and 4-fold declines in interleukin-1beta and tumor necrosis factor-alpha mRNA levels, respectively. Maximum expression of these essential cytokines was also delayed upon arsenic exposure. Our data indicate that arsenic exposure, at concentrations deemed safe in drinking water, suppresses the overall innate immune function in zebrafish and present the zebrafish as a unique model for studying immunotoxicity of environmental toxicants. To our knowledge, this is the first report describing the effects of such low levels of arsenic on host resistance to infection.


Subject(s)
Arsenic/toxicity , Immunity, Innate/drug effects , Zebrafish/immunology , Animals , Blood Bactericidal Activity/drug effects , Colony-Forming Units Assay , Cytokines/biosynthesis , DNA, Complementary/biosynthesis , RNA/biosynthesis , RNA, Messenger/biosynthesis , Respiratory Burst/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/biosynthesis
4.
J Immunol ; 178(7): 4517-27, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17372010

ABSTRACT

In mammals, Toll-IL-1R-containing adaptor molecule 1 (TICAM1)-dependent TLR pathways induce NF-kappaB and IFN-beta responses. TICAM1 activates NF-kappaB through two different pathways involving its interactions with TNFR-associated factor 6 and receptor-interacting protein 1. It also activates IFN regulatory factor 3/7 through its interaction with TANK-binding kinase-1, leading to the robust up-regulation of IFN-beta. In this study, we describe the role of zebrafish (Danio rerio) TICAM1 in activating NF-kappaB and zebrafish type I IFN. Zebrafish IFN is unique in that it cannot be categorized as being alpha- or beta-like. Through comprehensive sequence, phylogenetic, and syntenic analyses, we fully describe the identification of a zebrafish TICAM1 ortholog. Zebrafish TICAM1 exhibits sequence divergence from its mammalian orthologs and our data demonstrate that these sequence differences have functional consequences. Zebrafish TICAM1 activates zebrafish IFN; however, it does so in an apparently IFN regulatory factor 3/7-independent manner. Furthermore, zebrafish TICAM1 does not interact with zebrafish TNFR-associated factor 6, thus NF-kappaB activation is dependent upon its interaction with receptor-interacting protein 1. Comparative genome analysis suggests that TICAM1 and TICAM2 evolved from a common vertebrate TICAM ancestor following a gene duplication event and that TICAM2 was lost in teleosts following the divergence of the rayfin and lobefin fishes 450 million years ago. These studies provide evidence, for the first time, of the evolving function of a vertebrate TLR pathway.


Subject(s)
Adaptor Proteins, Vesicular Transport/classification , Adaptor Proteins, Vesicular Transport/physiology , Interferon Type I/genetics , NF-kappa B/metabolism , Transcriptional Activation , Zebrafish/immunology , Adaptor Proteins, Vesicular Transport/genetics , Amino Acid Sequence , Animals , Cells, Cultured , Gene Duplication , Humans , Molecular Sequence Data , Phylogeny , Sequence Alignment , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 3/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Integr Comp Biol ; 46(6): 1040-54, 2006 Dec.
Article in English | MEDLINE | ID: mdl-21672806

ABSTRACT

Understanding the ecotoxicological effects of arsenic in the environment is paramount to mitigating its deleterious effects on ecological and human health, particularly on the immune response. Toxicological and long-term health effects of arsenic exposure have been well studied. Its specific effects on immune function, however, are less well understood. Eukaryotic immune function often includes both general (innate) as well as specific (adaptive) responses to pathogens. Innate immunity is thought to be the primary defense during early embryonic development, subsequently potentiating adaptive immunity in jawed vertebrates, whereas all other eukaryotes must rely solely on the innate immune response throughout their life cycle. Here, we review the known ecotoxicological effects of arsenic on general health, including immune function, and propose the adoption of zebrafish as a vertebrate model for studying such effects on innate immunity.

SELECTION OF CITATIONS
SEARCH DETAIL
...