Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 384: 132530, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35227997

ABSTRACT

A new, fast, simple, and effective ultrasound-assisted dispersive liquid-liquid microextraction procedure (UA-DLLME) for the gas chromatography-mass spectrometry (GC-MS) determination of malondialdehyde, acrolein, and 4-hydroxy-2-nonenal in beverages was successfully developed. 2,4-Dinitrophenylhydrazine derivatization was performed during extraction. An asymmetrical 3541//18 screening design and a central composite surface response design were used to investigate the influence of the most critical factors during the extraction process (ultrasound time and temperature, extraction and disperser solvents volumes, salt addition, and derivatization reagent concentration). According to FDA guidelines, the method was validated, achieving good linearities with r2 ≥ 0.9982, recoveries between 94.0 and 102.4%, and reproducibility with RSD lower than 4.5%. The method was applied to simultaneously determine the compounds in 60 different beverage samples, including beer, coffee, black tea, and fruit juices. The presence of secondary lipid oxidation products is demonstrated in beverages with a strong roasting process or oxidation.


Subject(s)
Liquid Phase Microextraction , Acrolein/analysis , Aldehydes , Beverages/analysis , Gas Chromatography-Mass Spectrometry/methods , Limit of Detection , Liquid Phase Microextraction/methods , Malondialdehyde/analysis , Reproducibility of Results
2.
J Chromatogr A ; 1548: 19-26, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29555360

ABSTRACT

A fast and effective method using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach which includes partitioned liquid-liquid extraction (PLLE) and dispersive solid phase extraction (dSPE) clean-up step for the determination of seven 3-monochloropropane-1,2-diol (3-MCPD) fatty acid diesters in vegetable oils is developed and validated according to the Food and Drug Administration (FDA) guidelines. Due to the complexity of the matrices, combination of silica based sorbents (Silica Strong Anion Exchange (Si-SAX), Supel™ QuE Z-Sep+ (Z-Sep+) and Primary Secondary Amine (PSA) were tested for lipid removal. The effect of several experimental factors on the efficiency of the extraction procedure was studied by a screening design 3422//16 and a response surface Doehlert design. The separation and determination was carried out by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The method provided suitable linearity (r2 > 0.9960), precision (relative standard deviation (RSD) lower than 10%) and accuracy, in terms of recovery. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 10 to 20 µg kg -1 and from 25 to 50 µg kg-1, respectively. The recoveries at three spiking levels of 100, 250, and 500 µg kg-1 were over the range of 71.4-122.9% with RSD lower than 13%. The method was successfully applied in edible oils and fatty food samples. The results provide valuable information to assess the risk of exposure to these foodborne contaminants.


Subject(s)
Chromatography, Liquid/methods , Esters/analysis , Liquid-Liquid Extraction/methods , Plant Oils/chemistry , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , alpha-Chlorohydrin/analysis , Limit of Detection , Margarine/analysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...