Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Emerg Med J ; 39(3): 206-212, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34916280

ABSTRACT

BACKGROUND: There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting. METHODS: Adult patients (≥18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011-2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13-15 was classified as mild (mTBI); GCS 9-12 as moderate (moTBI) and GCS 3-8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed. RESULTS: Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls. CONCLUSIONS: S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting.


Subject(s)
Brain Injuries, Traumatic , Fatty Acid Binding Protein 3 , Interleukin-10 , Neurofilament Proteins , S100 Calcium Binding Protein beta Subunit , Adult , Aged , Biomarkers , Brain Injuries, Traumatic/diagnosis , Humans
2.
Front Neurol ; 11: 549527, 2020.
Article in English | MEDLINE | ID: mdl-33192979

ABSTRACT

Background: Blood biomarkers may enhance outcome prediction performance of head computed tomography scores in traumatic brain injury (TBI). Objective: To investigate whether admission levels of eight different protein biomarkers can improve the outcome prediction performance of the Helsinki computed tomography score (HCTS) without clinical covariates in TBI. Materials and methods: Eighty-two patients with computed tomography positive TBIs were included in this study. Plasma levels of ß-amyloid isoforms 1-40 (Aß40) and 1-42 (Aß42), glial fibrillary acidic protein, heart fatty acid-binding protein, interleukin 10 (IL-10), neurofilament light, S100 calcium-binding protein B, and total tau were measured within 24 h from admission. The patients were divided into favorable (Glasgow Outcome Scale-Extended 5-8, n = 49) and unfavorable (Glasgow Outcome Scale-Extended 1-4, n = 33) groups. The outcome was assessed 6-12 months after injury. An optimal predictive panel was investigated with the sensitivity set at 90-100%. Results: The HCTS alone yielded a sensitivity of 97.0% (95% CI: 90.9-100) and specificity of 22.4% (95% CI: 10.2-32.7) and partial area under the curve of the receiver operating characteristic of 2.5% (95% CI: 1.1-4.7), in discriminating patients with favorable and unfavorable outcomes. The threshold to detect a patient with unfavorable outcome was an HCTS > 1. The three best individually performing biomarkers in outcome prediction were Aß40, Aß42, and neurofilament light. The optimal panel included IL-10, Aß40, and the HCTS reaching a partial area under the curve of the receiver operating characteristic of 3.4% (95% CI: 1.7-6.2) with a sensitivity of 90.9% (95% CI: 81.8-100) and specificity of 59.2% (95% CI: 40.8-69.4). Conclusion: Admission plasma levels of IL-10 and Aß40 significantly improve the prognostication ability of the HCTS after TBI.

3.
Front Neurol ; 11: 376, 2020.
Article in English | MEDLINE | ID: mdl-32581990

ABSTRACT

Background: Patients with traumatic brain injury (TBI) exhibit a variable and unpredictable outcome. The proteins interleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have shown predictive values for the presence of intracranial lesions. Aim: To evaluate the individual and combined outcome prediction ability of IL-10 and H-FABP, and to compare them to the more studied proteins S100ß, glial fibrillary acidic protein (GFAP), and neurofilament light (NF-L), both with and without clinical predictors. Methods: Blood samples from patients with acute TBI (all severities) were collected <24 h post trauma. The outcome was measured >6 months post injury using the Glasgow Outcome Scale Extended (GOSE) score, dichotomizing patients into: (i) those with favorable (GOSE≥5)/unfavorable outcome (GOSE ≤ 4) and complete (GOSE = 8)/incomplete (GOSE ≤ 7) recovery, and (ii) patients with mild TBI (mTBI) and patients with TBIs of all severities. Results: When sensitivity was set at 95-100%, the proteins' individual specificities remained low. H-FABP showed the best specificity (%) and sensitivity (100%) in predicting complete recovery in patients with mTBI. IL-10 had the best specificity (50%) and sensitivity (96%) in identifying patients with favorable outcome in patients with TBIs of all severities. When individual proteins were combined with clinical parameters, a model including H-FABP, NF-L, and ISS yielded a specificity of 56% and a sensitivity of 96% in predicting complete recovery in patients with mTBI. In predicting favorable outcome, a model consisting IL-10, age, and TBI severity reached a specificity of 80% and a sensitivity of 96% in patients with TBIs of all severities. Conclusion: Combining novel TBI biomarkers H-FABP and IL-10 with GFAP, NF-L and S100ß and clinical parameters improves outcome prediction models in TBI.

4.
J Neurotrauma ; 36(14): 2178-2189, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30760178

ABSTRACT

The aim of the study was to examine the ability of eight protein biomarkers and their combinations in discriminating computed tomography (CT)-negative and CT-positive patients with traumatic brain injury (TBI), utilizing highly sensitive immunoassays in a well-characterized cohort. Blood samples were obtained from 160 patients with acute TBI within 24 h of admission. Levels of ß-amyloid isoforms 1-40 (Aß40) and 1-42 (Aß42), glial fibrillary acidic protein (GFAP), heart fatty-acid binding protein (H-FABP), interleukin 10 (IL-10), neurofilament light (NF-L), S100 calcium-binding protein B (S100B), and tau were measured. Patients were divided into CT-negative (n = 65) and CT-positive (n = 95), and analyses were conducted separately for TBIs of all severities (Glasgow Coma Scale [GCS] score 3-15) and mild TBIs (mTBIs; GCS 13-15). NF-L, GFAP, and tau were the best in discriminating CT-negative and CT-positive patients, both in patients with mTBI and with all severities. In patients with all severities, area under the curve of the receiver operating characteristic (AUC) was 0.822, 0.817, and 0.781 for GFAP, NF-L, and tau, respectively. In patients with mTBI, AUC was 0.720, 0.689, and 0.676, for GFAP, tau, and NF-L, respectively. The best panel of three biomarkers for discriminating CT-negative and CT-positive patients in the group of all severities was a combination of GFAP+H-FABP+IL-10, with a sensitivity of 100% and specificity of 38.5%. In patients with mTBI, the best panel of three biomarkers was H-FABP+S100B+tau, with a sensitivity of 100% and specificity of 46.4%. Panels of biomarkers outperform individual biomarkers in separating CT-negative and CT-positive patients. Panels consisted mainly of different biomarkers than those that performed best as an individual biomarker.


Subject(s)
Biomarkers/blood , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/diagnosis , Adult , Aged , Brain Injuries, Traumatic/pathology , Fatty Acid Binding Protein 3/blood , Female , Glial Fibrillary Acidic Protein/blood , Humans , Interleukin-10/blood , Male , Middle Aged , Sensitivity and Specificity , Tomography, X-Ray Computed
5.
J Neurotrauma ; 36(10): 1551-1560, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30489229

ABSTRACT

The purpose of this study was to correlate the early levels of glial fibrillary acidic protein (GFAP) and neurofilament light protein (NF-L) with outcome in patients with mild traumatic brain injury (mTBI). A total of 107 patients with mTBI (Glasgow Coma Scale ≥13) who had blood samples for GFAP and NF-L available within 24 h of arrival were included. Patients with mTBI were divided into computed tomography (CT)-positive and CT-negative groups. Glasgow Outcome Scale-Extended (GOSE) was used to assess the outcome. Outcomes were defined as complete (GOSE 8) versus incomplete (GOSE <8), and favorable (GOSE 5-8) versus unfavorable (GOSE 1-4). GFAP and NF-L concentrations in blood were measured using ultrasensitive single molecule array technology. Patients with incomplete recovery had significantly higher levels of NF-L compared with those with complete recovery (p = 0.005). The levels of GFAP and NF-L were significantly higher in patients with unfavorable outcome than in patients with favorable outcome (p = 0.002 for GFAP and p < 0.001 for NF-L). For predicting favorable outcome, the area under the receiver operating characteristic curve for GFAP and NF-L was 0.755 and 0.826, respectively. In a multi-variate logistic regression model, the level of NF-L was still a significant predictor for complete recovery (odds ratio [OR] = 1.008; 95% confidence interval [CI], 1.000-1.016). Moreover, the level of NF-L was a significant predictor for complete recovery in CT-positive patients (OR = 1.009; 95% CI, 1.001-1.016). The early levels of GFAP and NF-L are significantly correlated with the outcome in patients with mTBI. The level of NF-L within 24 h from arrival has a significant predictive value in mTBI also in a multi-variate model.


Subject(s)
Biomarkers/blood , Brain Concussion/blood , Glial Fibrillary Acidic Protein/blood , Neurofilament Proteins/blood , Recovery of Function/physiology , Adult , Aged , Female , Glasgow Outcome Scale , Humans , Male , Middle Aged , Prospective Studies
6.
PLoS One ; 13(7): e0200394, 2018.
Article in English | MEDLINE | ID: mdl-29985933

ABSTRACT

Mild traumatic brain injury (mTBI) patients may have trauma-induced brain lesions detectable using CT scans. However, most patients will be CT-negative. There is thus a need for an additional tool to detect patients at risk. Single blood biomarkers, such as S100B and GFAP, have been widely studied in mTBI patients, but to date, none seems to perform well enough. In many different diseases, combining several biomarkers into panels has become increasingly interesting for diagnoses and to enhance classification performance. The present study evaluated 13 proteins individually-H-FABP, MMP-1, MMP-3, MMP-9, VCAM, ICAM, SAA, CRP, GSTP, NKDA, PRDX1, DJ-1 and IL-10-for their capacity to differentiate between patients with and without a brain lesion according to CT results. The best performing proteins were then compared and combined with the S100B and GFAP proteins into a CT-scan triage panel. Patients diagnosed with mTBI, with a Glasgow Coma Scale score of 15 and one additional clinical symptom were enrolled at three different European sites. A blood sample was collected at hospital admission, and a CT scan was performed. Patients were divided into two two-centre cohorts and further dichotomised into CT-positive and CT-negative groups for statistical analysis. Single markers and panels were evaluated using Cohort 1. Four proteins-H-FABP, IL-10, S100B and GFAP-showed significantly higher levels in CT-positive patients. The best-performing biomarker was H-FABP, with a specificity of 32% (95% CI 23-40) and sensitivity reaching 100%. The best-performing two-marker panel for Cohort 1, subsequently validated in Cohort 2, was a combination of H-FABP and GFAP, enhancing specificity to 46% (95% CI 36-55). When adding IL-10 to this panel, specificity reached 52% (95% CI 43-61) with 100% sensitivity. These results showed that proteins combined into panels could be used to efficiently classify CT-positive and CT-negative mTBI patients.


Subject(s)
Brain Concussion/blood , Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Fatty Acid Binding Protein 3/blood , Glial Fibrillary Acidic Protein/blood , Tomography, X-Ray Computed , Biomarkers/blood , Cohort Studies , Diagnosis, Differential , Female , Humans , Interleukin-10/blood , Male , Middle Aged , S100 Calcium Binding Protein beta Subunit/blood , Sensitivity and Specificity
7.
PLoS One ; 13(2): e0193278, 2018.
Article in English | MEDLINE | ID: mdl-29466474

ABSTRACT

Traumatic brain injury is a common event where 70%-90% will be classified as mild TBI (mTBI). Among these, only 10% will have a brain lesion visible via CT scan. A triage biomarker would help clinicians to identify patients with mTBI who are at risk of developing a brain lesion and require a CT scan. The brain cells damaged by the shearing, tearing and stretching of a TBI event set off inflammation cascades. These cause altered concentrations of a high number of both pro-inflammatory and anti-inflammatory proteins. This study aimed to discover a novel diagnostic biomarker of mTBI by investigating a broad panel of inflammation biomarkers and their capacity to correctly identify CT-positive and CT-negative patients. Patients enrolled in this study had been diagnosed with mTBI, had a GCS score of 15 and suffered from at least one clinical symptom. There were nine patients in the discovery group, 45 for verification, and 133 mTBI patients from two different European sites in the validation cohort. All patients gave blood samples, underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. The ability of each protein to classify patients was evaluated with sensitivity set at 100%. Three of the 92 inflammation proteins screened-MCP-1, MIP-1alpha and IL-10 -were further investigated in the verification group, and at 100% sensitivity their specificities reached 7%, 0% and 31%, respectively. IL-10 was validated on a larger cohort in comparison to the most studied mTBI diagnostic triage protein to date, S100B. Levels of both proteins were significantly higher in CT-positive than in CT-negative patients (p < 0.001). S100B's specificity at 100% sensitivity was 18% (95% CI 10.8-25.2), whereas IL-10 reached a specificity of 27% (95% CI 18.9-35.1). These results showed that IL-10 might be an interesting and clinically useful diagnostic tool, capable of differentiating between CT-positive and CT-negative mTBI patients.


Subject(s)
Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/diagnostic imaging , Inflammation Mediators/blood , Interleukin-10/blood , Tomography, X-Ray Computed , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Female , Humans , Male , Middle Aged
8.
PLoS One ; 12(4): e0175572, 2017.
Article in English | MEDLINE | ID: mdl-28419114

ABSTRACT

The majority of patients with mild traumatic brain injury (mTBI) will have normal Glasgow coma scale (GCS) of 15. Furthermore, only 5%-8% of them will be CT-positive for an mTBI. Having a useful biomarker would help clinicians evaluate a patient's risk of developing intracranial lesions. The S100B protein is currently the most studied and promising biomarker for this purpose. Heart fatty-acid binding protein (H-FABP) has been highlighted in brain injury models and investigated as a biomarker for stroke and severe TBI, for example. Here, we evaluate the performances of S100B and H-FABP for differentiating between CT-positive and CT-negative patients. A total of 261 patients with a GCS score of 15 and at least one clinical symptom of mTBI were recruited at three different European sites. Blood samples from 172 of them were collected ≤ 6 h after trauma. Patients underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. H-FABP and S100B levels were measured using commercial kits, and their capacities to detect all CT-positive scans were evaluated, with sensitivity set to 100%. For patients recruited ≤ 6 h after trauma, the CT-positive group demonstrated significantly higher levels of both H-FABP (p = 0.004) and S100B (p = 0.003) than the CT-negative group. At 100% sensitivity, specificity reached 6% (95% CI 2.8-10.7) for S100B and 29% (95% CI 21.4-37.1) for H-FABP. Similar results were obtained when including all the patients recruited, i.e. hospital arrival within 24 h of trauma onset. H-FABP out-performed S100B and thus seems to be an interesting protein for detecting all CT-positive mTBI patients with a GCS score of 15 and at least one clinical symptom.


Subject(s)
Biomarkers/blood , Brain Concussion/blood , Brain Concussion/diagnostic imaging , Fatty Acid-Binding Proteins/blood , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Fatty Acid Binding Protein 3 , Female , Glasgow Coma Scale , Humans , Male , Middle Aged , Patient Admission , S100 Calcium Binding Protein beta Subunit/blood , Sensitivity and Specificity , Time Factors
9.
Sci Rep ; 6: 38300, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27924073

ABSTRACT

Accurately determining time-of-onset of cerebral infarction is important to clearly identify patients who could benefit from reperfusion therapies. We assessed the kinetics of peroxiredoxin 1 (PRDX1), a protein involved in oxidative stress during the acute phase of ischemia, and its ability to determine stroke onset in a population of patients with known onset of less than 24 hours and in a control group. Median PRDX1 levels were significantly higher in stroke patients compared to controls. PRDX1 levels were also higher from blood samples withdrawn before vs. after 3 hours following stroke onset, and before vs. after 6 hours. ROC analysis with area under the curve (AUC), sensitivity (Se) and specificity (Sp) determined from the Youden index was performed to assess the ability of PRDX1 levels to determine onset. Diagnostic performances of PRDX1 levels were defined by an AUC of 69%, Se of 53% and Sp of 86% for identifying cerebral infarction occurring <3 hours, and an AUC of 68%, Se of 49% and Sp of 88% for cerebral infarction occurring <6 hours. These first results suggest that PRDX1 levels could be the basis of a new method using biomarkers for determining cerebral infarction onset.


Subject(s)
Cerebral Infarction/diagnosis , Cerebral Infarction/genetics , Peroxiredoxins/genetics , Acute Disease , Adult , Aged , Aged, 80 and over , Area Under Curve , Biomarkers/blood , Case-Control Studies , Cerebral Infarction/blood , Cerebral Infarction/physiopathology , Female , Gene Expression , Humans , Male , Middle Aged , Peroxiredoxins/blood , ROC Curve , Time Factors
10.
J Inflamm (Lond) ; 12: 61, 2015.
Article in English | MEDLINE | ID: mdl-26543408

ABSTRACT

BACKGROUND: Inflammation is known to worsen cerebral damage at the acute phase of stroke. In this setting, cell adhesion molecules (CAMs) play a crucial role mediating migration of immune cells into the infarcted area. However, their value in long-term outcome prediction for patients with cerebrovascular diseases (CVD) is less described. METHODS: Levels of four CAMs (E-selectin, P-selectin glycoprotein ligand-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1)) and six other known biomarkers (C-reactive protein (CRP), interleukin-6 (IL-6), N-terminal pro-brain natriuretic peptide (NT-proBNP), troponin I, vasopressin-neurophysin 2-copeptin, and S100 calcium-binding protein B) were measured in a population of patients presenting CVD. Blood collections for analysis were performed within different time windows after stroke onset: 0-6 h, 6-36 h, 2-3 days, 5-7 days, and 2-3 weeks. Independent associations with poor outcome at 3 months (modified Rankin Scale score > 2) were sought using univariate and multivariate analysis after adjustments for age and National Institute of Health Stroke Scale score. Predictive ability of each biomarker has also been assessed with ROC analysis. RESULTS: One hundred patients were prospectively included whom 75 presented with ischemic strokes, nine with hemorrhagic strokes and 16 with transient ischemic attacks. During the first 6 h after stroke onset, E-selectin was found to be an independent predictor of 3-month outcome (odds ratio (OR) =24; 95 % confidence interval (95 % CI), 2-354; p = 0.022) (area under the curve (AUC) =78 %), as was VCAM-1 during the third week after onset (OR = 8; 95 % CI, 2-37; p = 0.01) (AUC = 73 %). Associations remained after the exclusion of patients with hemorrhagic strokes and transient ischemic attacks. Independent associations with outcome were also found for CRP (OR = 5; 95 % CI, 1-22; p = 0.023) and IL-6 (OR = 5; 95 % CI, 1-17; p = 0.021) at 2-3 days and for NT-proBNP at 6-36 h (OR = 20; 95 % CI, 1-337; p = 0.04). CONCLUSIONS: E-selectin and VCAM-1 were independent predictors of outcome in a population of patients with CVD. The predictive capability of other biomarkers known to be indicators for prognosis also emerged, confirming the study's robustness. CAMs levels could be considered as objective biological criteria for prognosis in CVD.

SELECTION OF CITATIONS
SEARCH DETAIL
...