Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-11088173

ABSTRACT

Molecular dynamics has been studied by broadband dielectric relaxation spectroscopy in the Sm-A, Sm-B, and Sm-E phases (Sm denotes smectic) of a homologous series of nonchiral stilbenes. An assignment of modes is presented based on their dependence on temperature and molecular length, and, as far as they obey the Arrhenius law, their activation energy has been determined. In general, reorientations of entire molecules around their short axis are active, whereas reorientations of entire molecules around their long axis are locked out in the Sm-E phase of shorter homologs, yet intramolecular reorientations of polar sites have been established. Strong evidence is presented for an interdependence of reorientations of entire molecules around the short and long axes within the biaxial Sm-E phase of longer homologs.

2.
Article in English | MEDLINE | ID: mdl-11046442

ABSTRACT

We have investigated the phenomenon of field-induced smectic layer instability, as monitored by synchrotron x-ray scattering. This instability means that, upon application of time-asymmetric electric fields to chiral smectics, the layer direction seems to "rotate" locally around an axis given by the direction of the applied field. For moderate values of field amplitude and asymmetry, domains with a favored layer inclination grow at the expense of unfavored ones, while larger fields and asymmetries generally lead to a chaotic flow behavior. At moderate amplitudes, we have followed the process of the horizontal layer folding (or horizontal chevron domain formation) and the smectic C* layer reorientation of ferroelectric liquid crystals by applying symmetric and asymmetric wave forms, respectively, and performing time resolved x-ray measurements. The studies unambiguously show the formation of a horizontal (in-plane, i.e., in a plane parallel to the cell substrates) chevron domain structure from a nonoriented sample by application of a symmetric electric field of sufficient amplitude. It is then demonstrated that a transition from the horizontal chevron domain structure to an in-plane uniform smectic layer direction takes place on application of asymmetric electric wave forms. Reversal of the field asymmetry reverses the inclination direction and selects the other layer normal direction as the uniform end state. The in-plane smectic layer reorientation process is followed here as it evolves, and analyzed directly by means of x-ray scattering.

SELECTION OF CITATIONS
SEARCH DETAIL