Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 301: 119024, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35202764

ABSTRACT

Indoor dust has been postulated as an important matrix for residential pesticide exposure. However, there is a lack of information on presence, concentrations and determinants of multiple pesticides in dust in residential homes close to treated fields. Our objective was to characterize the spatial and temporal variance of pesticides in house dust, study the use of doormats and floors as proxies for pesticides in indoor dust and identify determinants of occurrence and concentrations. Homes within 250 m from selected bulb fields were invited to participate. Homes within 20 km from these fields but not having agricultural fields within 500 m were selected as controls. House dust was vacuumed in all homes from floors (VFD) and from newly placed clean doormats (DDM). Sampling was done during two periods, when pesticides are used and not-used. For determination of 46 prioritized pesticides, a multi-residue extraction method was used. Most statistical analyses are focused on the 12 and 14 pesticides that were detected in >40% of DDM and VFD samples, respectively. Mixed models were used to evaluate relationships between possible determinants and pesticides occurrence and concentrations in DDM and VFD. 17 pesticides were detected in more than 50% of the homes in both matrixes. Concentrations differed by about a factor five between use and non-use periods among homes within 250 m of fields and between these homes and controls. For 7 pesticides there was a moderate to strong correlation (Spearman rho 0.30-0.75) between concentrations in DDM and VFD. Distance to agricultural fields and air concentrations were among the most relevant predictors for occurrence and levels of a given pesticide in DDM. Concentrations in dust are overall higher during application periods and closer to fields (<250 m) than further away. The omnipresence of pesticides in dust lead to residents being exposed all year round.


Subject(s)
Air Pollution, Indoor , Pesticides , Air Pollution, Indoor/analysis , Dust/analysis , Environmental Exposure/analysis , Housing , Pesticides/analysis
2.
Sci Total Environ ; 825: 153798, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35151737

ABSTRACT

BACKGROUND: Pesticides can be transported from the site of application to homes via different routes and lead to exposure of residents, raising concerns regarding health effects. We built a deterministic model framework (OBOmod) to assess exposure of residents living near fields where pesticides are applied. METHODS: OBOmod connects five independent models operating on an hourly timescale and high spatial resolution (meters). Models include descriptions of spray drift, volatilization, atmospheric transport and dispersion, exchange between outdoor and indoor air and exchange between indoor air and dust. Fourteen bulb field applications under different weather conditions and comprising 12 pesticides were simulated. Each simulation included the first seven days after the application. The concentrations computed with OBOmod were compared with those measured in outdoor and indoor air and the amounts measured in indoor dust samples. RESULTS: Model evaluation indicated suitability of the developed framework to estimate outdoor and indoor air concentrations. For most pesticides, model accuracy was good. The framework explained about 30% to 95% of the temporal and spatial variability of air concentrations. For 20% of the simulations, the framework explained more than 35% of spatial variability of concentrations in dust. In general, OBOmod estimates remained within one order of magnitude from measured levels. Calculations showed that in addition to spray drift during application, volatilization from the field after spraying and pesticides in house dust are important routes for residents' exposure to pesticides. CONCLUSIONS: Our framework covers many processes needed to calculate exposure of residents to pesticides. The evaluation phase shows that, with the exception of the dust model, the framework can be used in support of health and epidemiological studies, and can serve as a tool to support development of regulations and policy making regarding pesticide use.


Subject(s)
Air Pollution, Indoor , Pesticides , Air Pollution, Indoor/analysis , Dust/analysis , Environmental Exposure/analysis , Pesticides/analysis , Volatilization
3.
Malar J ; 18(1): 155, 2019 May 02.
Article in English | MEDLINE | ID: mdl-31046772

ABSTRACT

BACKGROUND: The protective efficacy of the most promising malaria whole-parasite based vaccine candidates critically depends on the parasite's potential to migrate in the human host. Key components of the parasite motility machinery (e.g. adhesive proteins, actin/myosin-based motor, geometrical properties) have been identified, however the regulation of this machinery is an unknown process. METHODS: In vitro microscopic live imaging of parasites in different formulations was performed and analysed, with the quantitative analysis software SMOOTIn vitro, their motility; their adherence capacity, movement pattern and velocity during forward locomotion. RESULTS: SMOOTIn vitro enabled the detailed analysis of the regulation of the motility machinery of Plasmodium berghei in response to specific (macro)molecules in the formulation. Albumin acted as an essential supplement to induce parasite attachment and movement. Glucose, salts and other whole serum components further increased the attachment rate and regulated the velocity of the movement. CONCLUSIONS: Based on the findings can be concluded that a complex interplay of albumin, glucose and certain salts and amino acids regulates parasite motility. Insights in parasite motility regulation by supplements in solution potentially provide a way to optimize the whole-parasite malaria vaccine formulation.


Subject(s)
Culture Media/chemistry , Locomotion/drug effects , Plasmodium berghei/drug effects , Sporozoites/physiology , Albumins/pharmacology , Animals , Culicidae/parasitology , Culture Media/pharmacology , Female , Glucose/pharmacology , Intravital Microscopy , Malaria/parasitology , Mice , Plasmodium berghei/physiology , Software
4.
Phys Rev E ; 95(4-1): 042503, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28505721

ABSTRACT

Many biological materials consist of sparse networks of disordered fibers, embedded in a soft elastic matrix. The interplay between rigid and soft elements in such composite networks leads to mechanical properties that can go far beyond the sum of those of the constituents. Here we present lattice-based simulations to unravel the microscopic origins of this mechanical synergy. We show that the competition between fiber stretching and bending and elastic deformations of the matrix gives rise to distinct mechanical regimes, with phase transitions between them that are characterized by critical behavior and diverging strain fluctuations and with different mechanisms leading to mechanical enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL
...