Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (186)2022 08 09.
Article in English | MEDLINE | ID: mdl-36036623

ABSTRACT

Lipid-based excipients (LBEs) are low-toxic, biocompatible, and natural-based, and their application supports the sustainability of pharmaceutical manufacturing. However, the major challenge is their unstable solid-state, affecting the stability of the pharmaceutical product. Critical physical properties of lipids for their processing-such as melt temperature and viscosity, rheology, etc.-are related to their molecular structure and their crystallinity. Additives, as well as thermal and mechanical stress involved in the manufacturing process, affect the solid-state of lipids and thus the performance of pharmaceutical products thereof. Therefore, understanding the alteration in the solid-state is crucial. In this work, the combination of powder x-ray diffraction and differential scanning calorimetry (DSC) is introduced as the gold standard for the characterization of lipids' solid state. X-ray diffraction is the most efficient method to screen polymorphism and crystal growth. The polymorphic arrangement and the lamella length are characterized in the wide- and small-angle regions of x-ray diffraction, respectively. The small-angle x-ray scattering (SAXS) region can be further used to investigate crystal growth. Phase transition and separation can be indicated. DSC is used to screen the thermal behavior of lipids, estimate the miscibility of additives and/or active pharmaceutical ingredients (API) in the lipid matrix, and provide phase diagrams. Four case studies are presented in which LBEs are either used as a coating material or as an encapsulation matrix to provide lipid-coated multiparticulate systems and lipid nanosuspensions, respectively. The lipid solid-state and its potential alteration during storage are investigated and correlated to the alteration in the API release. Qualitative microscopical methods such as polarized light microscopy and scanning electron microscopy are complementary tools to investigate micro-level crystallization. Further analytical methods should be added based on the selected manufacturing process. The structure-function-processability relationship should be understood carefully to design robust and stable lipid-based pharmaceutical products.


Subject(s)
Chemistry, Pharmaceutical , Excipients , Calorimetry, Differential Scanning , Drug Stability , Excipients/chemistry , Lipids/chemistry , Scattering, Small Angle , X-Ray Diffraction
2.
Mol Pharm ; 19(2): 547-557, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35044180

ABSTRACT

The impact of the crystallinity of organic solid materials on their tribocharging propensity is well reported. However, no unequivocal explanation about the potential underlying mechanism(s) could be found so far in the literature. This study reports the effect that different degrees of crystalline disorder has on the tribocharging propensity of a small molecular organic material, salbutamol sulfate (SS). Ball-milling was used to induce structural transformations in the crystalline structure of SS. Particles with different nanostructures were produced and analyzed for their solid-state, particle properties, and tribocharging. It was found that differences in the amorphous content among the processed particles and related moisture levels had an impact on powder tribocharging. A correlation between the latter and the nanostructural properties of the particles was also established. The presence of interfaces between nanodomains of different densities and shorter average lengths within the phases seems to lead to a mitigation of charge. This suggests that undetected, subtle nanostructural differences of materials can affect powder handling and processability by altering their tribocharging. The present findings demonstrate the nanostructural implications of powder triboelectrification, which can help toward the rational design of a wide variety of organic solids.


Subject(s)
Albuterol , Nanostructures , Albuterol/chemistry , Particle Size , Powders/chemistry , Sulfates
3.
Mol Pharm ; 19(2): 532-546, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34958588

ABSTRACT

The present study systematically investigates the effect of annealing conditions and the Kolliphor P 407 content on the physicochemical and structural properties of Compritol (glyceryl behenate) and ternary systems prepared via melt cooling (Kolliphor P 407, Compritol, and a hydrophilic API) representing solid-lipid formulations. The physical properties of Compritol and the ternary systems with varying ratios of Compritol and Kolliphor P 407 were characterized using differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SWAXS) and infrared (IR) spectroscopy, and hot-stage microscopy (HSM), before and after annealing. The change in the chemical profiles of different Compritol components as a function of annealing was evaluated using 1H NMR spectroscopy. While no change in the polymorphic form of API and Kolliphor P 407 occurred during annealing, a systematic conversion of the α- to ß-form was observed in the case of Compritol. Furthermore, the polymorphic transformation of Compritol was found to be dependent on the Kolliphor P 407 content. As per the Flory-Huggins mixing theory, higher miscibility was observed in the case of monobehenin-Kolliphor P 407, monobehenin-dibehenin, and dibehenin-tribehenin binary mixtures. The miscibility of Kolliphor P 407 with monobehenin and 1,2-dibehenin was confirmed by 1H NMR analysis. The observed higher miscibility of Kolliphor P 407 with monobehenin and 1,2-dibehenin is proposed as the trigger for the physical separation from the 1,3-diglyceride and triglycerides during melt solidification of the formulations. The phase separation is postulated as the mechanism underlying the formation of a stable ß-polymorphic form (a native form of 1,3-diglyceride) of Compritol upon annealing. This finding is expected to have an important implication for developing stable solid-lipid-surfactant-based drug formulations.


Subject(s)
Excipients , Surface-Active Agents , Calorimetry, Differential Scanning , Drug Compounding , Excipients/chemistry , Phase Transition , Solubility , Surface-Active Agents/chemistry
4.
Int J Pharm ; 607: 120970, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34363917

ABSTRACT

Hydrochlorothiazide (HCT) multiparticulate systems (MPS) were hot melt coated with the binary mixture of tripalmitin (PPP) and polysorbate 65 (PS 65) to gain an immediate release profile. Once, HCT MPS were produced with a constant ratio of PPP/PS 65 (90:10) at three different coating amounts (15, 25, and 60%w/w) and once the PPP/PS 65 ratio was varied on 98:2 and 80:20, by keeping the coating amount at 60%w/w. PS 65 induced the polymorphic transformation of PPP from the α-form to its most stable ß-form right after the hot melt coating (HMC). A release alteration of HCT, either accelerated or decelerated, occurred after the storage under accelerated conditions. The effect of the API core on the lipid lamellar configuration, the thermal behavior of lipid coating, and the effect of PS 65 concentration on the crystal growth of PPP were investigated via X-ray diffraction and DSC. While a low amount of PS 65 was sufficient to promote crystal growth of PPP and resulted in a decelerated release of HCT from the coating, a higher PS 65 concentration favored phase separation of PPP and PS 65 and led to an accelerated release. The increase in PS 65 reinforced the molecular interaction with the lipophilic HCT, reflected in less crystal growth and decelerated release. The knowledge presented in this study supports understanding the instability of binary emulsifier-lipid coating systems, paving the way for developing robust HMC formulations.


Subject(s)
Excipients , Polysorbates , Crystallization , Hot Temperature , Solubility , Triglycerides
5.
Int J Pharm ; 606: 120893, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34274456

ABSTRACT

Orally inhaled products (OIPs) are gaining increased attention, as pulmonary delivery is a preferred route for the treatment of various diseases. Yet, the field of inhalation biopharmaceutics is still in development phase. For a successful correlation between various in vitro data obtained during formulation characterization and in vivo performance, it is necessary to understand the impact of parameters such as solubility and dissolution of drugs. In this work, we used in vitro-in silico feedback-feedforward approach to gain a better insight into the biopharmaceutics behavior of inhaled Salbutamol Sulphate (SS) and Budesonide (BUD). The thorough characterization of the in vitro test media and the impact of different in vitro fluid components such as lipids and protein on the solubility of aforementioned drugs was studied. These results were subsequently used as an input into the developed in silico models to investigate potential PK parameter changes in vivo. Results revealed that media comprising lipids and albumin were the most biorelevant and impacted the solubility of BUD the most. On the contrary, no notable impact was seen in case of SS. The use of simple media such as phosphate buffer saline (PBS) might be sufficient to use in solubility studies of the highly soluble and permeable drugs. However, its use for the poorly soluble drugs is limited due to the greater potential for interactions within in vivo environment. The use of in silico tools showed that the model response varies, depending on the used media. Therefore, this work highlights the relevance of carefully selecting the media composition when investigating solubility and dissolution behavior, especially in the early phases of drug development and of poorly soluble drugs.


Subject(s)
Models, Biological , Pharmaceutical Preparations , Administration, Inhalation , Administration, Oral , Computer Simulation , Intestinal Absorption , Lung , Solubility
6.
Mol Pharm ; 18(3): 862-877, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33475378

ABSTRACT

The present study investigates the chemical composition governing the physical properties of mono- and diglycerides (MDGs) at the microstructural level, as a function of aging and lot-to-lot variability. The physical structure of the MDG plays a vital role in ameliorating the emulsion stability and is widely explored in diverse research horizons related to the pharmaceutical, cosmetic, and food industries. In an effort to understand the mechanism of emulsion stabilization, physical properties were extensively evaluated in selective commercial lots to determine if there is a correlation between the chemical composition of MDG and physical properties. The solid state of the MDG samples with different aging profiles was characterized using X-ray scattering, differential scanning calorimetry, attenuated total reflection-Fourier transform infrared spectroscopy, and NMR relaxometry. Moreover, the kinetic aspect of solid-state transformation was also evaluated via treating MDG samples with a heat-cool cycle. The chemical composition of MDGs was quantified using a quantitative NMR (qNMR) method. Interestingly, the X-ray scattering results demonstrated a change in the MDG polymorphic form and an increase in the %ß content as a function of aging. The increase in the %ß content led to the formation of rigid crystal structures of MDG, as evident from the NMR relaxometry. Chemical quantification of isomeric composition revealed chemical composition change as a potentially critical factor responsible for the altered physical structures of MDG with respect to aging and lot-to-lot variability. The findings correlated the solid-state transformation with the change in the chemical composition of the MDG as a combined effect of aging and lot-to-lot variability. This work serves as a basis to better understand the interdependency of the physicochemical properties of MDG. Furthermore, the present work can also be used as guidance for setting up the specifications of MDG, as per the required polymorphic form for a multitude of applications.


Subject(s)
Diglycerides/chemistry , Excipients/chemistry , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Magnetic Resonance Spectroscopy/methods , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods
7.
Acta Pharm ; 71(2): 215-243, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33151172

ABSTRACT

This article describes the designing of matrix tablets composed of polyethylene oxides (PEOs) with relative molecular masses of 1 × 106, 2 × 106, and 4 × 106. Percolation thresholds were determined for all of the selected PEO formulations (18, 16, and 12 %, m/m), taking into consideration excipients and tablet surface area which significantly increased the percolation threshold. Moreover, the robustness of the gel layer in PEO matrix tablets was evaluated by magnetic resonance imaging under various mechanical stresses (no flow, 12 mL min-1, and 64 mL-1 of medium flow). Correlations between the percolation threshold and gel thickness (R2 = 0.86), gel thickness and the erosion coefficient (R2 = 0.96) was detected. Furthermore, small-angle X-ray scattering of the selected PEOs detected differences in polymer molecular complexity at the nanoscale. Finally, the ratio of the heat of coalescence to the heat of fusion has confirmed the PEO molecular mass-dependent percolation threshold.


Subject(s)
Chemistry, Pharmaceutical/methods , Excipients/chemistry , Polyethylene Glycols/chemistry , Drug Compounding/methods , Magnetic Resonance Imaging , Molecular Weight , Tablets
8.
Eur J Pharm Sci ; 147: 105278, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32135269

ABSTRACT

The present study investigates the drug release-governing microstructural properties of melt spray congealed microspheres encapsulating the drug crystals in the matrix of glyceryl behenate and poloxamer (pore former). The solid-state, morphology, and micromeritics of the microspheres were characterized, before and after annealing, using calorimetry, X-ray scattering, porosimetry, scanning electron microscopy, and, NMR diffusometry. The in vitro drug release from and water uptake by the microspheres were obtained. The extent and the rate of drug release from the microspheres increased with a high poloxamer content and at higher annealing temperature and RH. All the drug release profiles were describable using the Higuchi release kinetics pointing towards the diffusion controlled release, both before and after annealing. The annealing process led to the polymorphic conversion of lipid and the increase in the pore size, predominantly at a higher temperature and humidity and for a high poloxamer content. The poloxamer domain increased from an initial 300 nm, up to 2000 nm upon annealing. The water diffusion rate inside the annealed microsphere was twice as fast as for unannealed counterparts. The findings relate the overall phase and pore structure change of the microsphere to the increased drug release induced by annealing. This work serves as a basis for the rational understanding of the modification of the in vitro performance by annealing, a widely used post-process for solid lipid products.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/methods , Chemistry, Physical , Drug Liberation , In Vitro Techniques , Lipids , Microspheres , Particle Size , Poloxamer/chemistry , Surface-Active Agents , Temperature
9.
Int J Pharm ; 580: 119199, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32147494

ABSTRACT

Previously, we reported on the surfactant cetylpyridinium chloride (CPC) as a crosslinker of alginate for the formation of stable polyelectrolyte-surfactant-complex nanoparticles. Here, we evaluate this system for increased solubility of a poorly soluble drug. The aim was to use CPC for solubilisation of ibuprofen and to use the micellar associates formed for alginate complexation and nanoparticle formation. We acquired deeper insights into the entropy led interactions between alginate, CPC and ibuprofen. Stable nanoparticles were formed across limited surfactant-to-polyelectrolyte molar ratios, with ~150 nm hydrodynamic diameter, monodispersed distribution, and negative zeta potential (-40 mV), with 34% ibuprofen loading. Their structure was obtained using small-angle X-ray scattering, which indicated disordered micellar associates when ibuprofen was incorporated. This resulted in nanoparticles with a complex nanostructured composition, as shown by transmission electron microscopy. Drug release from ibuprofen-cetylpyridinium-alginate nanoparticles was not hindered by alginate, and was similar to the release kinetics from ibuprofen-CPC solubilisates. These innovative carriers developed as polyelectrolyte-surfactant complexes can be used for solubilisation of poorly soluble drugs, where the surfactant simultaneously increases the solubility of the drug at concentrations below its critical micellar concentration and crosslinks the polyelectrolyte to form nanoparticles.


Subject(s)
Alginates/metabolism , Cetylpyridinium/metabolism , Ibuprofen/metabolism , Nanoparticles/metabolism , Polyelectrolytes/metabolism , Surface-Active Agents/metabolism , Alginates/administration & dosage , Alginates/chemistry , Cetylpyridinium/administration & dosage , Cetylpyridinium/chemistry , Drug Delivery Systems/methods , Drug Liberation , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Polyelectrolytes/administration & dosage , Polyelectrolytes/chemistry , Scattering, Small Angle , Solubility , Surface-Active Agents/administration & dosage , Surface-Active Agents/chemistry , Thermodynamics
10.
J Pharm Sci ; 108(10): 3272-3280, 2019 10.
Article in English | MEDLINE | ID: mdl-31173762

ABSTRACT

The present study investigated the impact of solid-state disorders generated during milling on the chemical reactivity of simvastatin. An amorphous and a partially crystalline simvastatin powders were generated via cryomilling simvastatin crystals for either 90 or 10 min, respectively. The thoroughly characterized milled powders were stored at 40°C/75% RH, in open and closed containers. The effect of milling and storage conditions on physical stability was investigated using simultaneous small and wide-angle X-ray scattering and differential scanning calorimetry. The chemical degradation was evaluated using liquid chromatography-mass spectrometry. Compared with the fully amorphous state, the partially crystalline simvastatin crystallized to a lower extent in the expense of higher chemical degradation on open storage. The closely stored samples degraded to a lower extent and crystallized to a higher extent than the openly stored ones. However, the trends of the total crystallinity and degradation between amorphous and partially crystalline powders were similar. Small-angle X-ray scattering revealed that the partially crystalline simvastatin comprised a higher extent of nanoscale density heterogeneity than the fully amorphous powder. The overall results pointed toward the role of the remaining amorphous content and the nanoscale and mesoscale density heterogeneity on the chemical reactivity in the disordered simvastatin.


Subject(s)
Powders/chemistry , Simvastatin/chemistry , Calorimetry, Differential Scanning/methods , Crystallization/methods , Drug Stability , Technology, Pharmaceutical/methods , X-Ray Diffraction/methods
11.
Int J Pharm ; 565: 569-578, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31100383

ABSTRACT

Solvent-free hot melt coating (HMC) provides a safer and more economic process compared to the conventional solvent coating techniques. However, drug release instability and the lack of fundamental understanding on it are limiting factors for application of HMC for industrial productions. In this work, we investigated glyceryl dibehenate, glyceryl monostearate and behenoyl polyoxyl-8 glyceride as HMC materials. The microstructure and solid state alteration of lipids were studied via polarized light microscopy, DSC and powder x-ray diffraction. Microcapsules of N-acetylcysteine particles were provided with these excipients and stored under long term and accelerated conditions for 3 months. The feasibility of selected lipids as HMC excipients was confirmed. The drug release from freshly coated microcapsules was dictated by microstructure, solid state and HLB of lipid coating. Alterations in the release profiles after storage under accelerated conditions were correlated with time-dependent structural alterations of selected lipids. The faster drug release from glyceryl dibehenate and behenoyl polyoxyl-8 glyceride microcapsules was correlated with a low-melting small fraction composed by mixed phases in glyceryl dibehenate and the amorphous region of polyoxyl part in behenoyl polyoxyl-8 glyceride, respectively. The slower drug release from glyceryl dibehenate after storage was explained by the transition of lipid crystals to the ß-form with dense crystalline structure. The gained information can be used to design effective tempering strategies for providing stable pharmaceutical products.


Subject(s)
Capsules/chemistry , Technology, Pharmaceutical/methods , Acetylcysteine/chemistry , Crystallization , Drug Liberation , Drug Stability , Excipients/chemistry , Fatty Acids/chemistry , Glycerides/chemistry
12.
Pharm Res ; 35(7): 135, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29736628

ABSTRACT

PURPOSE: The effect of different irradiation doses on the structure and activity of lyophilized powders of Hen Egg-White Lysozyme (HEWL) and alcohol dehydrogenase (ADH) was investigated using these substances as models for robust and sensitive proteins, respectively. Three doses were selected to cover the ranges of radio-sterilization (25kGy), treatment of blood products (25Gy) and annual background radiation dose (approximately 2mGy). The results offer an initial screening of different irradiation doses and support the development of X-ray imaging methods as non-destructive process analytical technology (PAT) tools for detecting the visible particulate matters in such products. METHODS: HEWL and ADH were exposed to X-rays in the solid state. The effect of irradiation was determined directly after irradiation and after storage. Structural changes and degradation were investigated using SAXS, SDS-PAGE and HPLC-MS. Protein functionality was assessed via activity assays. RESULTS: Lower irradiation doses of 25Gy and 2mGy had no significant impact on the structure and enzyme activity. The dose of 25kGy caused a significant decrease in the enzyme activity and structural changes immediately after irradiation of ADH and after storage of irradiated HEWL at -20°C. CONCLUSION: The results emphasize the importance of careful selection of radiation doses for development of X-ray imaging methods as PAT tools inspection of solid biopharmaceutical products.


Subject(s)
Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/physiology , Muramidase/chemistry , Muramidase/physiology , Radiation Dosage , Alcohol Dehydrogenase/radiation effects , Animals , Muramidase/radiation effects , Scattering, Small Angle , X-Rays
13.
Colloids Surf B Biointerfaces ; 168: 76-82, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29752132

ABSTRACT

The analytical potential of X-ray small-angle scattering (SAXS) combined with simultaneous wide-angle diffraction (WAXS) has been explored on the example of three active pharmaceutical ingredients, (desvenlofaxine, simvastatin, and sulfamerazine, resp.) with the aim of identifying quantitative parameters obtained from SAXS that allow to describe the nano-structural characteristics of different amorphous forms and to monitor the processes of amorphisation and ageing. Cryo-milling, co-milling with polymer, melting and melt-quenching have been used for amorphisation of initially crystalline powders. In parallel to SAXS, the WAXS patterns have been obtained to fingerprint the crystalline state. The SAXS results demonstrate strong, systematic nanostructure variations in amorphous samples obtained by different milling conditions, or by melt-quenching. It has been found that the mean-square density fluctuation, directly obtained from the SAXS invariant, is a sensitive and robust parameter to characterize the degree of nano-heterogeneity, which is related to entropy and hence thermodynamic stability. The SAXS curves also allow estimates of amorphous domain sizes of different density. The propensity to recrystallize or to remain amorphous, respectively, upon ageing has been found to depend on the existence of domains in the starting amorphous materials.


Subject(s)
Drug Stability , Pharmaceutical Preparations/chemistry , Powders/chemistry , Scattering, Small Angle , X-Ray Diffraction/methods , Desvenlafaxine Succinate/chemistry , Nanostructures/chemistry , Simvastatin/chemistry , Solubility , Sulfamerazine/chemistry , Technology, Pharmaceutical/methods , Time Factors
14.
AAPS PharmSciTech ; 18(8): 3053-3063, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28516413

ABSTRACT

Self-emulsifying drug delivery systems (SEDDS), often intended for oral delivery, are normally explored in biorelevant aqueous media. The high complexity of these multi-component systems leaves the understanding of self-emulsification poor, hindering formulation rationalization. In this work, we aimed to fill this gap by studying the effects of glycerol on the self-emulsification of a ternary component formulation made of 20% w/w Tween 80, 15% w/w Span 80, and 65% w/w Captex 300 Low C6. The behavior of SEDDS in pure water and a binary mixture of water and glycerol (58.8% w/w) were investigated by optical microscopy, SAXS (small angle X-ray scattering), dynamic light scattering, and surface tension measurements. The presence of glycerol, at 58.8% w/w, altered the self-emulsification behavior by suppressing the formation of lamellar structures observed in the presence of water, reducing the droplet mean diameter from 0.2 to 0.1 µm and changing the mechanism of self-emulsification. As co-surfactant, glycerol may intercalate within the polyoxyethylene chains of the surfactant at the palisade layer, increasing the interface flexibility and expanding it. Since no free water is available at the investigated glycerol concentration, glycerol, which is also a co-solvent, may additionally modify long-range interactions by reducing Van-der-Waals attractions or giving rise to repulsive surface-solvent mediated forces of entropic origin. These effects could be exploited to rationalize SEDDS formulations, widening their use within the pharmaceutical industry.


Subject(s)
Drug Delivery Systems/methods , Emulsifying Agents/chemistry , Glycerol/chemistry , Water/chemistry , Dose-Response Relationship, Drug , Emulsifying Agents/administration & dosage , Emulsions/administration & dosage , Emulsions/chemistry , Glycerol/administration & dosage , Lipids/administration & dosage , Lipids/chemistry , Scattering, Small Angle , Solubility , Surface Tension/drug effects , X-Ray Diffraction/methods
15.
Int J Pharm ; 517(1-2): 403-412, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-28007547

ABSTRACT

Although lipid excipients are of increasing interest for development of taste-masked and modified release formulations, the drug release instability and the lack of mechanistic understanding in that regard still prevent their larger-scale application. In this work, we investigated the physical stability of a binary (tripalmitin/polysorbate 65) lipid coating formulation with a known stable polymorphism. The coating composition was characterized using DSC to construct the phase diagram of binary system and polarized light microscopy to display the microstructure organization. The water uptake and the erosion of slabs cast from the coating formulations were investigated post-production and after storage. Subsequently, N-acetylcysteine particles were coated with the selected formulations and the drug release stability was investigated. Additionally, microstructure characterization was performed via SEM and X-ray diffraction. The drug release instability was explained by polysorbate 65 and tripalmitin phase growth during storage, especially at 40°C, suggesting that polysorbate 65 can leak out of tripalmitin spherulitic structures, creating lipophilic and impermeable tripalmitin regions. The growth of polysorbate 65 phase leads to larger hydrophilic channels with reduced tortuosity. This work indicates that for obtaining stable drug release profiles from advanced lipid formulations, microphase separation should be prevented during storage.


Subject(s)
Acetylcysteine/pharmacokinetics , Drug Liberation , Drug Stability , Polysorbates/chemistry , Triglycerides/chemistry , Acetylcysteine/chemistry , Crystallization , Drug Compounding , Excipients/chemistry , Lipids/chemistry , Particle Size , Phase Transition
16.
Eur J Pharm Biopharm ; 91: 1-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25617832

ABSTRACT

The purpose of this work was to investigate the influence of residual water in freeze-dried protein powders on the dissolution behavior of the solid-state proteins. To that end, six freeze-dried fibrinogen powder lots were stored at four levels of relative humidity and analyzed with regard to the particle size and shape, the specific surface area, the solid state of protein and the inner surface. Furthermore, the dissolution behavior of the powders was investigated. We clearly identified differences in the specific surface area, specific inner surface area, crystallinity, particle size and shape, which we were able to correlate to the dissolution behavior. These differences were triggered due to the different levels of residual moisture during two weeks of storage. Thus, we were able to show that the storage conditions have significant impact on the processing of pharmaceutical protein materials.


Subject(s)
Coagulants/chemistry , Fibrinogen/chemistry , Models, Molecular , Nanoparticles/chemistry , Water/analysis , Chemical Phenomena , Chemistry, Pharmaceutical , Drug Liberation , Drug Stability , Drug Storage , Freeze Drying , Humans , Kinetics , Particle Size , Powders , Protein Stability , Surface Properties
17.
Eur J Pharm Biopharm ; 89: 374-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25536110

ABSTRACT

The nano-structural properties of six different batches of lyophilized fibrinogen at various contents of residual humidity (6-20%) were studied by small- and wide-angle X-ray scattering (SWAXS) and related to the dissolution properties. As structural parameters, the specific surface and relative degree of crystallinity, from SAXS and WAXS, respectively, were used, and correlated to the dissolution rates. BET surface area and electron microscopy were used as ancillary methods. The results show a complex, biphasic behavior: above 9% water content the crystallinity increased, and the specific surface decreased with increasing water contents; at the lowest water contents (6%), however, where the WAXS patterns showed amorphous structure of the fibrinogens, the specific surface and dissolution rates diverged over a wide range of values. Systematic correlations could be established between specific surface and dissolution rates for the water contents below 13%: the dissolution rates were found to decrease with increasing specific surface, most notably in the amorphous form, in contrast to expectations from classical thermodynamics. Protein conformational changes and hydrophobic surface formation upon depletion of water could be possible causes. This is supported by the protective effect of the high-HLB surfactant PS-80, which was found to enlarge the specific surface.


Subject(s)
Fibrinogen/chemistry , Nanostructures/chemistry , Crystallization/methods , Freeze Drying/methods , Humidity , Protein Conformation , Scattering, Small Angle , Solubility , Thermodynamics , Water/chemistry , X-Ray Diffraction/methods , X-Rays
18.
Biophys J ; 100(9): 2160-8, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21539783

ABSTRACT

We applied x-ray diffraction, calorimetry, and infrared spectroscopy to lipid mixtures of palmitoyl-oleoyl phosphatidylcholine, sphingomyelin, and ceramide. This combination of experimental techniques allowed us to probe the stability and structural properties of coexisting lipid domains without resorting to any molecular probes. In particular, we found unstable microscopic domains (compositional/phase fluctuations) in the absence of ceramide, and macroscopically separated fluid and gel phases upon addition of ceramide. We also observed phase fluctuations in the presence of ceramide within the broad phase transition regions. We compare our results with fluorescence spectroscopy data and complement the previously reported phase diagram. We also obtained electron paramagnetic resonance data to assess the possible limitations of techniques employing a single label. Our study demonstrates the necessity of applying a combination of experimental techniques to probe local/global structural and fast/slow motional properties in complex lipid mixtures.


Subject(s)
Ceramides/chemistry , Membranes, Artificial , Amides/chemistry , Calorimetry, Differential Scanning , Electron Spin Resonance Spectroscopy , Phase Transition , Phosphatidylcholines/chemistry , Spectroscopy, Fourier Transform Infrared , Sphingomyelins , Temperature , Vibration , X-Ray Diffraction
19.
Biophys J ; 99(2): 499-506, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20643068

ABSTRACT

Sphingolipid signaling plays an important, yet not fully understood, role in diverse aspects of cellular life. Sphingomyelinase is a major enzyme in these signaling pathways, catalyzing hydrolysis of sphingomyelin to ceramide and phosphocholine. To address the related membrane dynamical structural changes and their feedback to enzyme activity, we have studied the effect of enzymatically generated ceramide in situ on the properties of a well-defined lipid model system. We found a gel-phase formation that was about four times faster than ceramide generation due to ceramide-sphingomyelin pairing. The gel-phase formation slowed down when the ceramide molar ratios exceeded those of sphingomyelin and stopped just at the solubility limit of ceramide, due to unfavorable pairwise interactions of ceramide with itself and with monounsaturated phosphatidylcholine. A remarkable correlation to in vitro experiments suggests a regulation of sphingomyelinase activity based on the sphingomyelin/ceramide molar ratio.


Subject(s)
Bacillus cereus/enzymology , Ceramides/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelins/metabolism , Cell Membrane/metabolism , Hydrolysis , Phosphatidylcholines/metabolism , Scattering, Small Angle , X-Ray Diffraction
20.
Langmuir ; 26(2): 1177-85, 2010 Jan 19.
Article in English | MEDLINE | ID: mdl-19681634

ABSTRACT

Synchrotron small-angle X-ray scattering (SAXS) was applied for studying the effects of hydrostatic pressure and temperature on the structural behavior of fully hydrated tetradecane (TC)-loaded monoolein (MO) systems. Our main attention focused on investigating the impact of isobaric and isothermal changes on the stability of the inverted type discontinuous Fd3m cubic phase as compared to the inverted type hexagonal (H(2)) liquid crystalline phase. The present results show that compressing the TC-loaded Fd3m phase under isothermal conditions induces a significant increase of its lattice parameter: it approximately increases by 1 A per 75 bar. Further, the Fd3m phase is more pressure-sensitive as compared to the Pn3m and the H(2) phases. At ambient temperatures, we observed the following structural transitions as pressure increases: Fd3m --> H(2) --> Pn3m. Our findings under isobaric conditions reveal more complicated structural transitions. At high pressures, we recorded the interesting temperature-induced structural transition of (Pn3m + L(alpha)) --> (Pn3m + L(alpha) + H(2)) --> (L(alpha) + H(2)) --> H(2) --> Fd3m --> traces of Fd3m coexisting with L(2). At high pressures and low temperatures, the TC molecules partially crystallize as indicated by the appearance of an additional diffraction peak at q = 3.46 nm(-1). This crystallite disappears at high temperatures and also as the system gets decompressed. The appearance of the Pn3m and the L(alpha) phases during compressing the fully hydrated MO/TC samples at high pressures and low temperatures is generally related to a growing hydrocarbon chain condensation, which leads to membrane leaflets with less negative interfacial curvatures (decreasing the spontaneous curvatures |H(0)|). Both the effects of pressure and temperature are discussed in detail for all nonlamellar phases on the basis of molecular shape and packing concepts.


Subject(s)
Glycerides/chemistry , Nanostructures/chemistry , Pressure , Temperature , Alkanes/chemistry , Models, Theoretical , Scattering, Small Angle , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...